Cell and Organ Transplantology. 2013; 1(1):102-107.
DOI: 10.22494/COT.V1I1.49
Effect of a water soluble derivative of fullerene C60 on the features neural progenitor cells in vitro
Rybachuk О. А.1,2,4, Levin R. E.1,3, Кyryk V. М.2, Susarova D. K.3, Tsupykov О. M.1,2,4, Smozhanik E. G.1,4, Butenko G. M.2, Skibo G. G.1,2,4, Troshin P. A.3, Pivneva Т. А.1,2,4
1Bogomoletz Institute of Physiology NAS Ukraine, Кyiv, Ukraine
2State Institute of Genetic and Regenerative Medicine NAMS Ukraine, Kyiv, Ukraine
3Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
4State Key Laboratory, Кyiv, Ukraine
Abstract
We studied the effect of a water soluble derivative of fullerene C60 on the behavior of cultured neural stem/progenitor cells. Addition of 20 nM of metal fullerenolate C60 (NaFL) into the cell culture increased the population of the cells almost twice in comparison with the control and also suppressed the formation of neurospheres. The obtained data allow us to suggest that NaFL has a positive effect on the proliferative activity of neural progenitors. The water-soluble fullerene nanostructures such as NaFL promoting the proliferation of neural stem cells might have numerous beneficent applications in cell biology and biotechnology.
1. Репин ВС. Эмбриональная стволовая клетка: от фундаментальных исследований в клинику. Пат физиол и эксперим терапия. 2004; 2:3-8. | ||||
2. Price J, Williams B. Neural stem cells. Curr Opinion Neurobiol. 2001; 11(5):564-87. https://doi.org/10.1016/S0959-4388(00)00250-6 |
||||
3. Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat. Biotechnol. 2005; 23(7):862–71. https://doi.org/10.1038/nbt1119 PMid:16003375 |
||||
4. Ourednik V, Ourednik J, Xu Y, et al. Cross-talk between stem cells and the dysfunctional brain is facilitated by manipulating the niche: evidence from an adhesion molecule. Stem Cells. 2009; 27(11):2846–56. https://doi.org/10.1002/stem.227 PMid:19785036 |
||||
5. Prestoz L, Relvas J, Hopkins K, et al. Association between integrindependent migration capacity of neural stem cells in vitro and anatomical repair following transplantation. Mol Cell Neurosci. 2001; 18(5):473–84. https://doi.org/10.1006/mcne.2001.1037 PMid:11922139 |
||||
6. Svendsen C, Smith A. New prospects for human stem cell therapy in the nervous system. Trends Neurosci. 1999; 22(8):357–64. https://doi.org/10.1016/S0166-2236(99)01428-9 |
||||
7. Gage F. Mammalian neural stem cell. Science. 2000; 287(5457):1433-8. https://doi.org/10.1126/science.287.5457.1433 PMid:10688783 |
||||
8. Бурлакова ЕБ, Конрадов АА, Мальцева ЕЛ. Действие сверхмалых доз биологически активных веществ и низкоинтенсивных физических факторов. Химическая физика. 2003; 22(2):21–40. | ||||
9. Хадарцев АА, Туктамышев ИШ. Шунгит в медицине. Информационный материал. Тула, 2005:5–6. | ||||
10. Tikhomirov AA, Andrievsky GV. Chronic alcoholization-induced damage to astroglia and intensificftion of lipid peroxidation in the rat brain protector effect of hydrated form of fullerene C60. Neurophysiology. 2007; 39(2):119–25. https://doi.org/10.1007/s11062-007-0015-8 |
||||
11. Скулачев В. П. Н2О2-сенсоры легких и кровеносных сосудов и их роль в антиоксидантной защите организма. Пульмонология. – 2000. – № 2. – C 6–9. | ||||
12. Wang I, Tai L, Lee D, et al. C60 and Water-Soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem. 1999; 42(22):4614–20. https://doi.org/10.1021/jm990144s PMid:10579823 |
||||
13. Bensasson R, Bretteich M, Frederiksen J, et al. Reactions of (aq), CO2•-, HO•, O2•- and O2 with a dendro[60]fullerene and C60[C(COOH)2]n (n = 52–6). Free Radical Biology and Medicine. 2000; 29(1):26–33. https://doi.org/10.1016/S0891-5849(00)00287-2 |
||||
14. Ali S, Hardt J, Quick K, et al. Biologicalli effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Biology and Medicine. 2004; 37(8):1191–202. https://doi.org/10.1016/j.freeradbiomed.2004.07.002 PMid:15451059 |
||||
15. Chueh S, Lai M, Lee M, et al. Decrease of free radical level in organ perfusate by a novel water-soluble carbon-sixty, hexa (sulfobutyl) fullerenes. Transplant Proc. 1999; 31(5):1976–7. https://doi.org/10.1016/S0041-1345(99)00234-1 |
||||
16. Avdeev M, Khokhryakov A, Tropin T. Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir. 2004; 20(11):4363–8. https://doi.org/10.1021/la0361969 PMid:15969139 |
||||
17. Mchedlov-Petrossyan N, Klochkov V, Andrievsky G. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J Chem Soc Faraday Trans. 1997; 93:4343–6. https://doi.org/10.1039/a705494g |
||||
18. Huang S, Mashino T, Mochizuki M, et al. Effect of hexasulfobutylated C60 on the isolated aortic ring of guinea pig. Pharmacology. 2000; 64:91–7. https://doi.org/10.1159/000056156 |
||||
19. Запороцкая ИВ, Чернозатонский ЛА. Исследование механизма положительного влияния фуллерена на процессы восстановления пространственной памяти. Вестник новых медицинских технологий. 2005; 2:117–9. | ||||
20. Yang D, Wang M, Chen I, et al. Systemic administration of a water-soluble hexasulfonated C(60) (FC(4)S) reduces cerebral ischemia-induced infarct volume in gerbils. Neurosci Lett. 2001; 311(2):121-4. https://doi.org/10.1016/S0304-3940(01)02153-X |
||||
21. Kim J, Lee M. Fullerene inhibits beta-amyloid peptide aggregation. Biochem. Biophys. Res. Commun. 2003; 303(2):576-9. https://doi.org/10.1016/S0006-291X(03)00393-0 |
||||
22. Marsagishvili L, Bobylev A, Shpagina M, et al. Effect of fullerenes C60 on X-protein amyloids. Biofizika. 2009; 54(2):202–205. https://doi.org/10.1134/s000635090902002x |
||||
23. Bobylev A, Kornev A, Bobyleva L, et al. Fullerenolates: metallated polyhydroxylated fullerenes with potent anti-amyloid activity. Org Biomol Chem. 2011; 9:5714-9. https://doi.org/10.1039/c1ob05067b PMid:21713297 |
||||
24. Ширинкин СВ. Медицинские нанотехнологии. Использование природных фуллеренов при патологии памяти, внимания и реакций. Мир психологии. 2007; 3(51):170–4. | ||||
25. Andrievsky G, Zhmuro A, Zabobonina L. First clinical case of treatment of patient (volunteer) with rectal adenocarcinoma by hydrated fullerenes: natural course of the disease or non-specific anticancer activity. The Electrochemical Society Interface, Canada: Spring. 2000:700. | ||||
26. Chem C, Xing G, Wang J, et al. Multihydroxylated (Gd@C82(OH)22)n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nanoletters. – 2005; 5:2050–2057. https://doi.org/10.1021/nl051624b PMid:16218736 |
||||
27. Ryan J, Bateman H, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J. Immunology. 2007; 179(1):665–72. https://doi.org/10.4049/jimmunol.179.1.665 |
||||
28. Huang Y, Shen C, Luh T, et al. Blokade of apoptotic signaling of transforming growht factor-beta in human hepatoma cells by carboxyfullerene. Eur J Biochem. 1998; 254(1):38–43. https://doi.org/10.1046/j.1432-1327.1998.2540038.x PMid:9652391 |
||||
29. Lin Y, Lei H, Luh T, et al. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology. 2000; 276(1):258–62. https://doi.org/10.1006/viro.2000.0490 PMid:10998325 |
||||
30. Piotrovsky L, Dumpis M, Poznykova L, et al. Study of the biological activity of the adducts of fullerenes with poly(N-vinylpyrrolidine). Mol Mat. 2000; 13:41–50. | ||||
32. Tsao N, Luh T, Chou C, et al. In vitro action of carboxyfullerene. J Antimicrobal Chemother. 2002; 49(4):641–9. https://doi.org/10.1093/jac/49.4.641 |
||||
33. Bosi S, Da Ros T, Spalluto G, et al. A new multi- charged C60 derivative: synthesis and biological properties. Eur J Org Chem. 2002; 17:2928–34. | ||||
34. Kornev A, Peregudov A, Martynenko V, et al. Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem Commun. 2011; 47(29):8298-300. https://doi.org/10.1039/c1cc12209f PMid:21666897 |
||||
35. Chawla P, Chawla V, Maheswari R, et al. Fullerenes: From carbon to nanomedicine. Mini Reviews in Medicinal Chem. 2010; 10(8):662-77. https://doi.org/10.2174/138955710791572497 |
||||
36. Kornev A, Khakina E, Troyanov S, et al. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor. Chem Commun. 2012; 48(44):5461-3. https://doi.org/10.1039/c2cc00071g PMid:22540119 |
||||
37. Ciccolini F. Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development. Mol Cell Neurosci. 2001; 17(5):895-907. https://doi.org/10.1006/mcne.2001.0980 PMid:11358486 |
||||
38. Sun Y Shi J, Lu P. Neurotrophic factors and neural stem cells (abstract). Sheng Li Ke Xue Jin Zhan. – 2002; 33(4):313-6. PMid:12650066 |
||||
39. Israsena N, Hu M, Fu W, et al. The presence of FGF2 sig¬naling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol. 2004; 268(1):220-31. https://doi.org/10.1016/j.ydbio.2003.12.024 PMid:15031118 |
||||
40. Andressen C, Stocker E, Klinz F. Nestin-specific green fluorescent protein expression in embryonic stem cell-derived neural precursor cell used for transplantation. Stem Cell. 2001; 19(5):419-24. https://doi.org/10.1634/stemcells.19-5-419 PMid:11553850 |
||||
41. Caldwell M.A, He X, Wilkie N, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nature Biotechnol. 2001; 19(5):475-80. https://doi.org/10.1038/88158 PMid:11329020 |
||||
42. Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 2003; 993(1-2):18-29. https://doi.org/10.1016/j.brainres.2003.08.061 PMid:14642827 |
||||
43. Campos L. Neurospheres: insights into neural stem cell biology. J Neurosci Res. 2004; 78(6):761-9. https://doi.org/10.1002/jnr.20333 PMid:15505793 |
Rybachuk ОА, Levin RE, Кyryk VМ, Susarova DK, Tsupykov ОM, Smozhanik E G, Butenko GM, Skibo GG, Troshin PA, Pivneva ТА. Effect of a water soluble derivative of fullerene C60 on the features neural progenitor cells in vitro. Cell and Organ Transplantology. 2013; 1(1):102-107. doi: 10.22494/COT.V1I1.49
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.