Acellular matrix as a substrate for tissue-engineered graft of heart valve

Home/2013, Vol. 1, No. 1/Acellular matrix as a substrate for tissue-engineered graft of heart valve

Cell and Organ Transplantology. 2013; 1(1):52-55.
DOI: 10.22494/COT.V1I1.47

Acellular matrix as a substrate for tissue-engineered graft of heart valve

Popandopulo A. G., Petrova M. V.
V. K. Husak State Institute ofbest grill cover for weber Urgent and Recovery Surgery of the NAMS, Donetsk, Ukraine

In many cases heart valve prosthetics is the only solution to save patient’s life. All mechanical prosthetics currently used are not able to perform function in the body fully because non-living materials are used for their production. Tissue engineering provides the reconstruction of viable valves using stem cells. example of synthesis essay introduction ru brides Acellularized three-dimensional tissue scaffolds as a matrix for autologous cells do improve function of heart valves and promote heart regeneration.

Full Text PDF (eng) Full text PDF (ru)

interesting research topics for high school students

1. Акатов ВС, Муратов Р.М, Фадеева ИС, и др. Изучение биосовместимости трансплантатов клапанов сердца, девитализированных антикальцинозным способом. Клеточная трансплантология и тканевая инженерия. 2010; 5(2):36–41.
2. Акатов ВС, Фесенко НИ, Соловьев ВВ, и др. Подавление кальцификации трансплантатов клапанов сердца путем их девитализации. Клеточная трансплантология и тканевая инженерия. 2010; 5(1):41–6.
4. Барбараш ЛС, Барабаш НА, Журавлева ИЮ. Биопротезы клапанов сердца: проблемы и перспективы. – Кемерово: Современная отечественная книга, 1994. – 547с.
5. Бокерия ЛА, Муратов РМ, Скопин ИИ, и др. Криосохраненные аллографты в реконструктивной хирургии пороков аортального клапана. – М.: НЦССХ им. А. Н. Бакулева РАМН, 2007. – 282 с.
6. Волова ТГ, Шишацкая ЕИ, Миронов ПВ. Материалы для медицины, клеточной и тканевой инженерии. – Красноярск: СФУ, 2009. – С.168–170.
7. Орловский П. И, Гриценко В. В, Юхнев А. Д, и др. Искусственные клапаны сердца / Под ред. Академика РАМН Ю. Л. Шевченко. – СПб.: ЗАО “ОЛМА Медиа Групп”, 2007. – 448с
9. Таганович АД, и др. Биологическая химия: краткий курс лекций для иностранных учащихся стомфака. – Мн.: БГМУ, 2005. – 119 с.
10. Bader A, Schilling T, Teebken O, Brandes G. Tissue engineering of heart valves – human endothelial cell seeding of detergentмexample of synthesis essay introduction ru brides acellularized porcine valves. Eur J Cardiothorac Surg. 1998; 14:279–84.
11. Badylak S, Weiss D, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. The Lancet. 2012; 379 (9819):943–52.
12. Czaja M, Weiner F, Eghbali M. Differential effects of gamma-interferon on collagen and fibronectin gene expression. J Biol Chem. 1987; 262:1348–51.
13. Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol. 1992; 87( 2):183–9.
14. Elkins R, Goldstein S, Hewitt C, Walsh S. Recellularization of heart valve grafts by a process of adaptive remodeling. Semin Thorac Cardiovasc Surg. 2001; 13:87–92.
15. Grauss R, Hazekamp M, Vliet S, et al. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac and Cardiovasc Surg. 2003; 126:63–82.
16. Hoerstrup SP, Sodian R, Daebritz S, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000; 102(19 Suppl 3):III44–9.
17. Kasimir M, Rieder E, Seebacher G, Nigisch A. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. 2006; 15(2):278–86.
18. Klopsch C, Steinhoff G. Tissue-engineered devices in cardiovascular. Eur Surg Res. 2012; 49:44–52.
19. O’Brien M, McGiffin D, Stafford E. Allograft aortic valve implantation: techniques for all types of aortic valve and root pathology. Ann Thorac Surg. 1989; 48(4):600–9.
20. Rieder E, Seebacher G, Kasimir M. Decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation. – 2005. – 111:2792–2797.
21. Rosanova I, Michenko B, Zaitsev V. The effect of cells on biomaterials calcification: experiments with diffusion chamber. J Biomed Mater Res. 1991; 25:277–80.
22. Ross M, Wojciech P. Histology: A Text and Atlas. Lippincott Williams & Wilkins, 2010:235–241.
23. Schmidt D, Hoerstrup S. Tissue engineered heart valves based on human cells. Swiss Med Wkly. 2005; 135:618–23.
24. Schmidt D, Stock UA, Hoerstrup S. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Phil Trans R Soc B. 2007; 362:1505–12.
PMid:17588875 PMCid:PMC2440411
25. Shinoka T, Breuer C, Tanel R, Zund G. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 1995; 60:513–6.
26. Simon P, Kasimir M, Seebacher G, Weigel G. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J of Cardio-thoracic Surg. 2003; 23:1002–6.
27. Steinhoff G, Stock U, Karim N. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits. Circulation. 2000; 102(19 Suppl 3):III50-5.
28. Weber K, Sun Y, Tuagi S, Cleutjens J. Collagen network of the myocardium: function, structural remodelina and regulatory mechanisms. J Mol Cell Cardiol. 1994; 26:279–92.
29. Wilson E, Spinale F. Myocardial remodelling and matrix metalloproteinases in heart failure: turmoil within the interstitium. Ann Med. 2001; 33:623–34.

Popandopulo AG, Petrova MV. Acellular matrix as a substrate for tissue-engineered graft of heart valve. Cell and Organ Transplantology. 2013; 1(1):52-55. doi: 10.22494/COT.V1I1.47


Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.