Cell and Organ Transplantology. 2015; 3(2): 190-194.
DOI: 10.22494/COT.V3I2.13
Neural stem cell niches in the adult mammalian brain
Tsupykov O. M.
Bogomoletz Institute of Physiology NAS of Ukraine, Кyiv, Ukraine
State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, Kyiv, Ukraine
Abstract
Stem cells of the central nervous system have received a great deal of attention in neurobiology in the last decade. It has been shown that neurogenesis occurs in the postnatal period in specialized niches of the adult mammalian brain. The niche is a key regulator of stem cell behavior. Recent data underscore the complexity and heterogeneity of the different components of the niche, and the presence of local signaling microdomain. The review is devoted to recent views on the structural organization of neurogenic niches and regulatory factors involved at different stages of neurogenesis in the postnatal period. Understanding of stem cells behavior in the niches can serve as a basis for determination of these cells function in the adult brain.
Key words: neural progenitors, neurovascular niche, subventricular zone, subgranular zone
Full Text PDF (eng) Full Text PDF (ua)1. Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010; 467(7313):323–327. https://doi.org/10.1038/nature09347 PMid:20844536 PMCid:PMC2941915 |
||||
2. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135(3509):1127–1128. https://doi.org/10.1126/science.135.3509.1127 PMid:13860748 |
||||
3. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2001; 2:287–293. https://doi.org/10.1038/35067582 PMid:11283751 |
||||
4. Anthony TE, Klein C, Fishell G, et al. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 2004; 41:881–890. https://doi.org/10.1016/S0896-6273(04)00140-0 |
||||
5. Brandt MD, Jessberger S, Steiner B, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci. 2003; 24:603–613. https://doi.org/10.1016/S1044-7431(03)00207-0 |
||||
6. Brown J, Cooper-Kuhn CM, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci. 2003; 17(10):2042–2046. https://doi.org/10.1046/j.1460-9568.2003.02647.x PMid:12786970 |
||||
7. Capilla-Gonzalez V, Lavell E, Qui-ones-Hinojosa A, et al. Regulation of subventricular zone-derived cells migration in the adult brain. Adv. Exp. Med. Biol. 2015; 853:1–21. https://doi.org/10.1007/978-3-319-16537-0_1 PMid:25895704 |
||||
8. Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb. Exp. Pharmacol. 2015; 228:99–155. https://doi.org/10.1007/978-3-319-16522-6_4 PMid:25977081 |
||||
9. Cunningham LA, Candelario K, Li L. Roles for HIF-1α in neural stem cell function and the regenerative response to stroke. Behav. Brain Res. 2012; 227:410–417. https://doi.org/10.1016/j.bbr.2011.08.002 PMid:21871501 PMCid:PMC4559269 |
||||
10. Decimo I, Bifari F, Krampera M, et al. Neural stem cell niches in health and diseases. Curr. Pharm. Des. 2012; 18(13):1755–1783. https://doi.org/10.2174/138161212799859611 PMid:22394166 PMCid:PMC3343380 |
||||
11. Decimo I, Bifari F, Rodriguez FJ, et al. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells. 2011;29:2062–2076. https://doi.org/10.1002/stem.766 PMid:22038821 PMCid:PMC3468739 |
||||
12. Doetsch F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 2003; 13:543–550. https://doi.org/10.1016/j.gde.2003.08.012 PMid:14550422 |
||||
13. Doetsch F. The glial identity of neural stem cells. Nat.Neurosci. 2003; 6:1127–1134. https://doi.org/10.1038/nn1144 PMid:14583753 |
||||
14. Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998; 4(11):1313-1317. https://doi.org/10.1038/3305 PMid:9809557 |
||||
15. Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia. 2015; 63(8):1330–1349. https://doi.org/10.1002/glia.22839 PMid:25913849 |
||||
16. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004; 116:769–778. https://doi.org/10.1016/S0092-8674(04)00255-7 |
||||
17. Giachino C, Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front. Neurosci. 2014; 8:32. https://doi.org/10.3389/fnins.2014.00032 PMid:24611040 PMCid:PMC3933793 |
||||
18. Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, et al. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat. Rec. (Hoboken). 2013; 296(9):1435–1452. https://doi.org/10.1002/ar.22746 PMid:23904071 |
||||
19. Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA. 1983; 80:2390–2394. https://doi.org/10.1073/pnas.80.8.2390 |
||||
20. Hirota Y, Sawada M, Huang SH, et al. Roles of Wnt signaling in the neurogenic niche of the adult mouse ventricular-subventricular zone. Neurochem. Res. 2015; Nov 16. [Epub ahead of print]. PMid:26572545 |
||||
21. Jenny B, Kanemitsu M, Tsupykov O, et al. Fibroblast growth factor-2 overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential. Stem Cells. 2009; 27(6):1309–1317. https://doi.org/10.1002/stem.46 PMid:19489096 |
||||
22. Jones KS, Connor B. Intrinsic regulation of adult subventricular zone neural progenitor cells and the effect of brain injury. Am. J. Stem Cells. 2011; 1(1):48–58. PMid:23671797 PMCid:PMC3643385 |
||||
23. Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science. 1977; 197:1092–1094. https://doi.org/10.1126/science.887941 |
||||
24. Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Med. 2015; 5(7):a018812. https://doi.org/10.1101/cshperspect.a018812 PMid:26330519 |
||||
25. Laywell ED, Rakic P, Kukekov VG, et al. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA. 2000; 97:13883–13888. https://doi.org/10.1073/pnas.250471697 PMid:11095732 PMCid:PMC17670 |
||||
26. Lee SW, Clemenson GD, Gage FH. New neurons in an aged brai. Behav. Brain Res. 2012; 227:497–507. https://doi.org/10.1016/j.bbr.2011.10.009 PMid:22024433 PMCid:PMC3264739 |
||||
27. Licht T, Keshet E. The vascular niche in adult neurogenesis. Mech. Dev. 2015; 138P1:56–62. | ||||
28. Lim DA, Alvarez-Buylla A. Adult neural stem cells stake their ground. Trends Neurosci. 2014; 37(10):563–571. https://doi.org/10.1016/j.tins.2014.08.006 PMid:25223700 PMCid:PMC4203324 |
||||
29. Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000; 28(3):713–726. https://doi.org/10.1016/S0896-6273(00)00148-3 |
||||
30. Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res. 2015: S0006-8993(15)00325-X. | ||||
31. Lin R, Cai J, Nathan C, et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol. Dis. 2015; 74:229–239. https://doi.org/10.1016/j.nbd.2014.11.016 PMid:25484283 |
||||
32. Mariano ED, Teixeira MJ, Marie SK, et al. Adult stem cells in neural repair: Current options, limitations and perspectives. World J. Stem Cells. 2015; 7(2):477–482. https://doi.org/10.4252/wjsc.v7.i2.477 PMid:25815131 PMCid:PMC4369503 |
||||
33. Massirer KB, Carromeu C, Griesi-Oliveira K, et al. Maintenance and differentiation of neural stem cells. Wiley Interdiscip Rev. Syst. Biol. Med. 2011; 3(1):107–114. https://doi.org/10.1002/wsbm.100 PMid:21061307 |
||||
34. Mercier F, Kitasako JT, Hatton GI. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 2002; 451:170–188. https://doi.org/10.1002/cne.10342 PMid:12209835 |
||||
35. Merkle FT, Tramontin AD, Garcia-Verdugo JM, et al. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl. Acad. Sci. USA. 2004; 101:17528–17532. https://doi.org/10.1073/pnas.0407893101 PMid:15574494 PMCid:PMC536036 |
||||
36. Montalbán-Loro R, Domingo-Muelas A, Bizy A, et al. Epigenetic regulation of stemness maintenance in the neurogenic niches. World J. Stem Cells. 2015; 7(4):700–710. https://doi.org/10.4252/wjsc.v7.i4.700 PMid:26029342 PMCid:PMC4444611 |
||||
37. Nait-Oumesmar B, Decker L, Lachapelle F, et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 1999; 11:4357–4366. https://doi.org/10.1046/j.1460-9568.1999.00873.x PMid:10594662 |
||||
38. Nam H, Lee KH, Nam DH, et al. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J. Stem Cells. 2015; 7(1):126–136. https://doi.org/10.4252/wjsc.v7.i1.126 PMid:25621112 PMCid:PMC4300923 |
||||
39. Ottone C, Krusche B, Whitby A, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nature Cell Biol. 2014; 16:1045–1056. https://doi.org/10.1038/ncb3045 PMid:25283993 PMCid:PMC4298702 |
||||
40. Park K, Nam Y, Choi Y. An agarose gel-based neurosphere culture system leads to enrichment of neuronal lineage cells in vitro. In Vitro Cell Dev. Biol. Anim. 2015; 51(5):455–462. https://doi.org/10.1007/s11626-014-9855-x PMid:25539864 |
||||
41. Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience. 2015. pii: S0306-4522(15)00981-1. | ||||
42. Plumpe T, Ehninger D, Steiner B, et al. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 2006; 7:77. https://doi.org/10.1186/1471-2202-7-77 PMid:17105671 PMCid:PMC1657022 |
||||
43. Putnam AJ. The instructive role of the vasculature in stem cell niches. Biomat. Sci. 2014; 2:1562–1573. https://doi.org/10.1039/C4BM00200H PMid:25530848 PMCid:PMC4267578 |
||||
44. Rakic P. Limits of neurogenesis in primates. Science. 1985; 227(4690):1054-1056. https://doi.org/10.1126/science.3975601 PMid:3975601 |
||||
45. Ramasamy S, Narayanan G, Sankaran S, et al. Neural stem cell survival factors. Arch. Biochem. Biophys. 2013; 534(1-2):71–87. https://doi.org/10.1016/j.abb.2013.02.004 PMid:23470250 |
||||
46. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414:105–111. https://doi.org/10.1038/35102167 PMid:11689955 |
||||
47. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255:1707–1710. https://doi.org/10.1126/science.1553558 |
||||
48. Robins SC, Stewart I, McNay DE, et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 2013; 4:2049. https://doi.org/10.1038/ncomms3049 PMid:23804023 |
||||
49. Rueger MA, Schroeter M. In vivo imaging of endogenous neural stem cells in the adult brain. World J. Stem Cells. 2015; 7(1):75–83. https://doi.org/10.4252/wjsc.v7.i1.75 PMid:25621107 PMCid:PMC4300938 |
||||
50. Sanin V, Heeß C, Kretzschmar HA, Schuller U. Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia. Neuropathol. Appl. Neurobiol. 2013; 39:510–518. https://doi.org/10.1111/j.1365-2990.2012.01301.x PMid:22985410 |
||||
51. Scadden D.T. The stem-cell niche as an entity of action. Nature. 2006; 441(7097):1075–1079. https://doi.org/10.1038/nature04957 PMid:16810242 |
||||
52. Seaberg RM, van der Kooy DJ. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. Neurosci. 2002; 22(5):1784–1793. | ||||
53. Steiner B, Kronenberg G, Jessberger S, et al. Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia. 2004; 46:41–52. https://doi.org/10.1002/glia.10337 PMid:14999812 |
||||
54. Sun YJ, Jin K, Childs JT, et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: Evidence from knockout mice and growth factor administration. Developmental Biology. 2006; 289(2):329–335. https://doi.org/10.1016/j.ydbio.2005.10.016 PMid:16337622 |
||||
55. Sütterlin P, Williams EJ, Chambers D, et al. The molecular basis of the cooperation between EGF, FGF and eCB receptors in the regulation of neural stem cell function. Mol. Cell. Neurosci. 2013; 52:20–30. https://doi.org/10.1016/j.mcn.2012.10.006 PMid:23085403 |
||||
56. Tao Y, Ma L, Liao Z, et al. Astroglial β-arrestin1-mediated nuclear signaling regulates the expansion of neural precursor cells in adult hippocampus. Sci. Rep. 2015; 5:15506. https://doi.org/10.1038/srep15506 PMid:26500013 PMCid:PMC4620451 |
||||
57. Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008; 3(3):279–288. https://doi.org/10.1016/j.stem.2008.07.025 PMid:18786415 |
||||
58. Tramontin AD, García-Verdugo JM, Lim DA, et al. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex. 2003; 13(6):580–587. https://doi.org/10.1093/cercor/13.6.580 |
||||
59. Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 2014; 8:396. https://doi.org/10.3389/fncel.2014.00396 PMid:25505873 PMCid:PMC4245909 |
||||
60. Whitman MC, Greer CA. Adult neurogenesis and the olfactory system. Prog. Neurobiol. 2009; 89(2):162–175. https://doi.org/10.1016/j.pneurobio.2009.07.003 PMid:19615423 PMCid:PMC2748178 |
Tsupykov OM. Neural stem cell niches in the adult mammalian brain. Cell and Organ Transplantology. 2015; 3(2):190-194. doi: 10.22494/COT.V3I2.13
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.