The biological properties of cancer stem cells in malignant gliomas in tissue culture: a review

Home/2015, Vol. 3, No. 2/The biological properties of cancer stem cells in malignant gliomas in tissue culture: a review

Cell and Organ Transplantology. 2015; 3(2):163-168.
DOI: 10.22494/COT.V3I2.12

The biological properties of cancer stem cells in malignant gliomas in tissue culture: a review

Semenova V. M., Lisyany M. I., Rosumenko V. D., Egorova D. M., Staino L. P.
A. P. Romodanov State Institute of Neurosurgery NAMS of Ukraine, Kyiv, Ukraine

This review presents recent data on the biological properties of cancer stem cells in brain gliomas. The possibilities of using of experimental methods of cell culture and immunohistochemical identification of tumor stem cells as a part of neurospheres (tumorospheres) are shown. Methodological features of neurospheres culture are described.
Literature data about the dependence of neurospheres formation activity in the culture on the degree of anaplasia of original glioma tissues are presented considering the disease outcomes in neuro-oncological patients. Possibilities of the practical use of cultured tumorospheres in the study of selective impact of antiblastic drugs on tumor stem cells in gliomas are described.

Key words: cancer stem cells, glioma, cell culture, neurosphere

Full Text PDF (eng) Full Text PDF (ru)

1. Gursel DB, Shin BJ, Burkhardt J-K, et. al. Glioblastoma Stem-Like Cells – Biology and Therapeutic Implications. Cancers. 2011; 3(2):2655–2666.
PMid:21796273 PMCid:PMC3142771
2. Park DM. Biology of Glioma Cancer Stem Cells. Mol. Cells. 2009; 28:7–12.
3. Lisyany NI. Immunologija i immunoterapija zlokachestvennyh gliom golovnogo mozga. [Immunology and Immunotherapy of malignant gliomas of the brain]. Serija “Nejroimmunologija” Kiev: Interservis – Series “Neuroimmunology”. Kiev: Interservice. 2011; 5:240 p.
4. Wang JC. Evaluating Therapeutic efficacy against cancer stem cells: New challenges posed by a new paradigm. Cell Stem Cell. 2007; 1:497–501.
5. Bleau AM, Howard BM, Taylor LA, et al. New strategy for the analysis of phenotypic marker antigens in brain tumor-derived neurospheres in mice and humans Neurosurg. Focus. 2008; 24(3-4):E 28.
6. Pollard SM, Yoshikawa K, Clarke ID, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009; 4:568–580.
7. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. Engl. J. Med. 2005; 353:811–822.
8. Lee J, Kotliarova S, Kotliarov Y, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006; 9:391–403.
9. Kong BH, Park N-R, Shim J-K, et al. Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child’s Nervous System. 2013; 29(2):217–229.
10. Kok M, Koornstra RH, Margarido TC, et al. Mammosphere-derived gene set predicts outcome in patients with ER-positive breast cancer. The Journal of Pathology. 2009; 218(3):316–326.
11. Kim HS, Yoo SY, Kim KT, et al. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance. International Journal of Clinical and Experimental Pathology. 2012; 5(8):754–761.
PMid:23071857 PMCid:PMC3466976
12. Pirozzi G, Tirino V, Camerlingo R, et al. Prognostic value of cancer stem cells, epithelial-mesenchymal transition and circulating tumor cells in lung cancer. Oncology Reports. 2013; 29(5):1763–1768.
13. Bao B, Ali S, Ahmad A, et al. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. Stem Cells and Development. 2014; 23(16):1947–1958.
14. Wang X, Ren H, Zhao T, et al. Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis. 2014; 35(10):2283–2290.
15. Reya T, Morrison SJ, Clarce MF, et al. Stem cells cancer and cancer stem cells. Nature. 2001; 414:105–111.
16. Singh SK, Clarke ID, Terasaki M, et al. Identification of Cancer Stem Cell in Human Brain Tumors. Cancer Res. 2003; 63(18):5821–5828.
17. Sulman E. Aldape K, Colman H. Brain tumor stem cells. Current Problems in Cancer. 2008; 32(3):124–142.
18. Binello E, Qadeer ZA, Kothari HP, Emdad L, et al. Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: Characterization In Vitro. J. Cancer. 2012; 3:166–174.
PMid:22514559 PMCid:PMC3328782
19. Dahlstrand J, Collins VP, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer res. 1992; 52:5334–5341.
20. Tohyama T, Lee VM, Rorke LB, et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 1992; 66:303–313.
21. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumor initiating cells. Nature. 2004; 432:396–401.
22. Ben-Porath I, Thomson NW, Carev V J, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 2008; 40:499–507.
PMid:18443585 PMCid:PMC2912221
23. Mishima K, Kato Y, Kaneko MK, et al. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathologica. 2006; 111(5):483–488.
24. Laks DR, Masterman-Smith M, Visnyei K, et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells. 2009; 27(4):980–987.
PMid:19353526 PMCid:PMC3177534
25. Dahlrot RH, Hermansen SK, Hansen S, et al. What is the clinical value of cancer stem cell markers in gliomas? International Journal of Clinical and Experimental Pathology. 2013; 6(3):334–348.
PMid:23412423 PMCid:PMC3563206
26. Christensen K, Schrøder HD, Kristensen BW. CD133 identifies perivascular niches in grade II-IV astrocytomas. Journal of Neuro-Oncology. 2008; 90(2):157–170.
27. Kim K-J, Lee K-H, Kim H-S, et al. The presence of stem cell marker-expressing cells is not prognostically significant in glioblastomas. Neuropathology. 2011; 31(5):494–502.
28. Schoppmann SF, Berghoff AS, Jesch B, et al. Expression of podoplanin is a rare event in sporadic gastrointestinal stromal tumors and does not influence prognosis. Future Oncology. 2012; 8(7):859–866.
29. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 1992; 12:4565–4574.
30. Singec I, Knoth R, Meyer RP, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods. 2006; 3:801–806.
31. Hasselbach LA, Irtenkauf SM, Lemke NW, et al. Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry. J. Vis. Exp. 2014; 83(e51088):1–9.
32. Qiang L, Yang Y, Ma YJ, et al. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett. 2009; 279(1):13–21.
33. Gilbert CA, Ross AH. Cancer Stem cells: Cell Culture, Markers and Targets for New Therapies. J.Cell.Biochem. 2009; 108(5):1031–1038.
PMid:19760641 PMCid:PMC2909872
34. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad .Sci. USA. 2003; 100:15178–15183.
PMid:14645703 PMCid:PMC299944
35. Ahmed S. The culture of neural stem cells. J. Cell Biochem. 2009; 106:1–6.
36. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004; 64(19):7011–7021.
37. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat. Rev. Cancer. 2006; 6:425–436.
38. deCarvalho AC, Nelson K, Lemke N, et al. Gliosarcoma Stem Cells Undergo Glial and Mesenchymal Differentiation In Vivo. Stem Cells. 2010; 28(2):181–190.
PMid:19937755 PMCid:PMC2873790
39. Azari H, Millette S, Ansari S, et al. Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay. J. Vis. Exp. 2011; 56(e3633):1–5.
40. Woolard K, Fine HA. Glioma stem cells: better flat than round. Cell Stem Cell. 2009; 4: 466–467.
41. Facchino S, Abdouh M, Chatoo W, et al. BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J.Neurosci. 2010; 28(30):1096–1111.
42. Yi L, Zhou C, Wang B, et al. Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngenic graft model for research on glioma-initiating cells. Int.J.Oncol. 2013; 43(2): 477–484.
43. Pavon LF, Marti LC, Sibov TT, et al. In vitro analysis of neurospheres derived from glioblastoma primary culture: a novel methodology paradigm. Front.Neurol. 2014; 4:214–220.
PMid:24432012 PMCid:PMC3883037
44. Li SC, Long TV, Ho HW, et al. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell International. 2012; 12:41–60.
PMid:22995409 PMCid:PMC3546918
45. Bao S, Wu Q, MCLendon DE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006a; 444:756–760.
46. Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD1339(-) glioblastoma-derived cancer stem cell show differential growth characteristics and molecular profiles. Cancer Res. 2007; 67: 4010–4015.
47. Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest. 2008; 88:808–815.
48. Son MJ, Woolard K, Nam DH, et al. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem cell. 2009; 4:440–452.
49. Clement V, Marino D, Cudalbu C, et al. Marker-independent identification of glioma-initiating cells. Nature Methods. 2010; 7:224–228.
50. Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002; 39(3):193–206.
51. Yuan X, Curtin J, Xion Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004; 23:9392–9400.
52. Germano IM, Swiss V, Casaccia P. Primary brain tumors, neural stem cells, and brain tumor cancer cells: Where is the link? Neuropharmacol. 2010; 58(6):903–910.
PMid:20045420 PMCid:PMC2839061
53. Strojnik T, Røsland GV, Sakariassen PO, et al. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surgical Neurology. 2007; 68(2):133–143.
54. Beier D, Rohrl S, Pillai DR, et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 2008; 68:5706–5715.
55. Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clinical Cancer Research. 2008; 14(24):8205–8212.
56. Zeppernick F, Ahmadi R, Campos B, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008; 14(1):123–129.
57. Zhang M, Song T, Yang L, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008; 27: 85–92.
PMid:19108713 PMCid:PMC2633002
58. Wang X, Ren H, Zhao T, et al. Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis. 2014; 35(10):2283–2290.
59. Kong BH, Moon JH, Huh UM, et al. Prognostic Value of Glioma Cancer Stem Cell Isolation in Survival of Primary Glioblastoma Patients. Stem Cells International. 2014; Article ID 838950. 6 p.
60. S. Bao, Q. Wu, Z. Li, S. Sathornsumetee, H. Wang, R.E. McLendon, A.B. Hjelmeland, J.N. Rich Targeting cancer stem cells through L1CAM suppresses glioma grouth / // Cancer Res. – 2008. – Vol. 68. – P. 7043–6048.
61. Dietrich J, Imitola J, Kesari S. Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas . Nat.Clin.Pract. 2008; 5:393–404.
62. Bao S, Wu Q, Sathornsumetae S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer.Res. 2006b; 66:7843–7848.
63. Ernst A, Hofmann S, Ahmadi R, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clinical Cancer Research. 2009; 15(21):6541–6550.
64. Strojnik T, Rosland GV, Sakariassen PO, et al. Neural stem cell markers, nestin and musashi proteins, in the progress of human glioma: correlation of nestin with prognosis of parient survival. Surg Neurol. 2007; 68(2):133–144.
65. Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008; 14(24):8205–8212.
66. Chinnaiyan P, Wang M, Rojiani AM, et al. The prognostic value of nestin expression in newly diagnosed glioblastoma: report from the radiation therapy oncology group. Radiation Oncology. 2008; 3(1):32–40.
PMid:18817556 PMCid:PMC2563009
67. Burkhardt JK, Shin BJ, Boockvar JA. Neural Stem Cells and Glioma Stem-Like Cells Respond Differently to Chemotherapeutic Drugs: Selectivity at the Cellular Level. Neurosurgery. 2011; 68(6):21–22.
68. Gong X, Schwartz PH, Linskey ME, et al. Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology. 2011; 76(13):1126–1134.
PMid:21346220 PMCid:PMC3269770

Semenova VM, Lisyany MI, Rosumenko VD, Egorova DM, Staino LP. The biological properties of cancer stem cells in malignant gliomas in tissue culture: a review. Cell and Organ Transplantology. 2015; 3(2):163-168. doi: 10.22494/COT.V3I2.12


Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.