Stem cells transplantation in the treatment of patients with cerebral palsy

Home/2020, Vol. 8, No. 1/Stem cells transplantation in the treatment of patients with cerebral palsy

Cell and Organ Transplantology. 2020; 8(1):76-80.
DOI: 10.22494/cot.v8i1.107

Stem cells transplantation in the treatment of patients with cerebral palsy

Petriv T.1,2,3, Tatarchuk M.1, Tsymbaliuk Ya.1, Tsymbaliuk Yu.1, Tsymbaliuk V.4

  • 1Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Department of Reconstructive Neurosurgery with X-ray surgery, Kyiv, Ukraine
  • 2Medical Center Hemafund, LTD, Kyiv, Ukraine
  • 3QR Health Solutions, Kyiv, Ukraine
  • 4National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine


Cerebral palsy remains a significant problem today, despite scientific and technological progress. The high degree of disability and unsatisfactory quality of life of patients in this category, necessitates the search for and implementation of the latest treatments, one of which is cell transplantation. The use of regenerative cell technologies in the treatment of patients with cerebral palsy is extremely promising. Numerous experimental studies have significantly expanded the understanding of the mechanisms of the effect of the use of stem cells in cerebral palsy. Clinical applications of stem cells of different origins are safe, which is one of the prerequisites for continuing research in this area.
This review is devoted to the use of regenerative cell technologies in the treatment of cerebral palsy, the current state and prospects of the approach to the treatment of cerebral palsy with stem cells.

Key words: stem cells, cell therapy, cerebral palsy


Full Text PDF (eng) Full Text PDF (ua)

1. Nakaz MOZ №286 vid 09.04.2013р. “Pro zatverdzhennya ta vprovadzhennya mediko-tekhnologіchnih dokumentіv zі standartizacії medichnoї dopomogi pri organіchnih urazhennyah golovnogo mozku u dіtej, yakі suprovodzhuyut’sya ruhovimi porushennyami” [in Ukrainian].
2. Kabacij M. S. Goshko V. Yu.; Seker T. M. Likuvannya spasty’chny’x form dy’tyachogo cerebral’nogo paralichu v ditej na etapax operaty’vnogo vtruchannya. Travma 2016; 17 (3): 166-168. doi:10.22141/1608-1706.3.17.2016.75803 [in Ukrainian].
3. Gulati S, Sondhi V. Cerebral Palsy: An Overview. Indian J Pediatr. 2018;85(11):1006-1016. doi:10.1007/s12098-017-2475-1.
4. Lee FK, Lin YL, Wang PH. Mesenchymal stem cells and cerebral palsy. J Chin Med Assoc. 2020;83(4):323-324. doi:10.1097/JCMA.0000000000000263.
5. Fu X, Hua R, Wang X, et al. Synergistic Improvement in Children with Cerebral Palsy Who Underwent Double-Course Human Wharton’s Jelly Stem Cell Transplantation. Stem Cells Int. 2019;2019:7481069. doi:10.1155/2019/7481069.
PMid:31636676 PMCid:PMC6766101
6. Boruczkowski D, Zdolińska-Malinowska I. Wharton’s Jelly Mesenchymal Stem Cell Administration Improves Quality of Life and Self-Sufficiency in Children with Cerebral Palsy: Results from a Retrospective Study. Stem Cells Int. 2019;2019:7402151. doi:10.1155/2019/7402151.
PMid:31191683 PMCid:PMC6525822
7. Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res. 2020;87(2):265-276. doi:10.1038/s41390-019-0425-5.
PMid:31086355 PMCid:PMC6854309
8. Chang YS, Ahn SY, Sung S, Park WS. Stem Cell Therapy for Neonatal Disorders: Prospects and Challenges. Yonsei Med J. 2017;58(2):266-271. doi:10.3349/ymj.2017.58.2.266.
PMid:28120555 PMCid:PMC5290004
9. Domenighetti AA, Mathewson MA, Pichika R, et al. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy. Am J Physiol Cell Physiol. 2018;315(2):C247-C257. doi:10.1152/ajpcell.00351.2017.
PMid:29694232 PMCid:PMC6139501
10. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. Published 2019 Feb 26. doi:10.1186/s13287-019-1165-5.
PMid:30808416 PMCid:PMC6390367
11. Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. Adv Exp Med Biol. 2019;1201:1-22. doi:10.1007/978-3-030-31206-0_1.
12. Laplane L, Solary E. Towards a classification of stem cells. Elife. 2019;8:e46563. doi:10.7554/eLife.46563
PMid:30864951 PMCid:PMC6415933
13. Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol. 2018;1842:3-27. doi:10.1007/978-1-4939-8697-2_1.
14. Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019-1024. doi:10.1016/j.jcyt.2019.08.002
15. Pіchkur L.D. Nejrohіrurgіchne lіkuvannya hvorih na dityachij cerebral’nij paralіch [disertacіya]. Kiїv (Ukraїna): DU “Іnstitut nejrohіrurgії іm. akad. A.P.Romodanova NAMN Ukraїni”; 2009 [in Ukrainian].
16. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268-277. doi:10.1038/nrc3034.
17. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. doi:10.1016/j.cell.2007.11.019.
18. Godini R, Lafta HY, Fallahi H. Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns. 2018;29:1-9. doi:10.1016/j.gep.2018.04.001.
19. Berglund S, Magalhaes I, Gaballa A, Vanherberghen B, Uhlin M. Advances in umbilical cord blood cell therapy: the present and the future. Expert Opin Biol Ther. 2017;17(6):691-699. doi:10.1080/14712598.2017.1316713.
20. Ruggeri A, Paviglianiti A, Gluckman E, Rocha V. Impact of HLA in cord blood transplantation outcomes. HLA. 2016;87(6):413-421. doi:10.1111/tan.12792.
21. Cavusoglu T, Kilic KD, Yigitturk G, Tomruk C, Turgut M, Uyanikgil Y. Clinical Use and Patentability of Cord Blood. Recent Pat Endocr Metab Immune Drug Discov. 2017;11(1):13-21. doi:10.2174/1872214812666180314121241.
22. Polymeri A, Giannobile WV, Kaigler D. Bone Marrow Stromal Stem Cells in Tissue Engineering and Regenerative Medicine. Horm Metab Res. 2016;48(11):700-713. doi:10.1055/s-0042-118458.
23. Lagarkova MA. Such Various Stem Cells. Biochemistry (Mosc). 2019;84(3):187-189. doi:10.1134/S0006297919030015.
24. Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell. 2018;22(6):824-833. doi:10.1016/j.stem.2018.05.004.
PMid:29859173 PMCid:PMC6434696
25. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells. 2019;8(8):784. doi:10.3390/cells8080784.
PMid:31357692 PMCid:PMC6721499
26. Guadix JA, Zugaza JL, Gálvez-Martín P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Características, aplicaciones y perspectivas de las células madre mesenquimales en terapia celular. Med Clin (Barc). 2017;148(9):408-414. doi:10.1016/j.medcli.2016.11.033.
27. Marofi F, Vahedi G, Hasanzadeh A, et al. Mesenchymal stem cells as the game-changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol. 2019;234(2):1268-1288. doi:10.1002/jcp.27152.
28. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci. 2014;34(6):2231-2243. doi:10.1523/JNEUROSCI.1619-13.2014.
PMid:24501362 PMCid:PMC3913870
29. Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol. 2016;419(2):199-216. doi:10.1016/j.ydbio.2016.09.006.
30. Kosykh A, Beilin A, Sukhinich K, Vorotelyak E. Postnatal neural crest stem cells from hair follicle interact with nerve tissue in vitro and in vivo. Tissue Cell. 2018;54:94-104. doi:10.1016/j.tice.2018.08.005.
31. Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131. doi:10.1186/s13287-016-0394-0
PMid:27612948 PMCid:PMC5016979
32. Wang S, Zhu R, Li H, Li J, Han Q, Zhao RC. Mesenchymal stem cells and immune disorders: from basic science to clinical transition. Front Med. 2019;13(2):138-151. doi:10.1007/s11684-018-0627-y.
33. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. Tissue Eng Part B Rev. 2017;23(6):515-528. doi:10.1089/ten.TEB.2016.0365.
34. Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med. 2018;13(5):595-610. doi:10.2217/rme-2018-0019
35. Ma T, Wang X, Jiang D. Immune Tolerance of Mesenchymal Stem Cells and Induction of Skin Allograft Tolerance. Curr Stem Cell Res Ther. 2017;12(5):409-415. doi:10.2174/1574888X12666170301122744.
36. Chirba MA, Sweetapple B, Hannon CP, Anderson JA. FDA regulation of adult stem cell therapies as used in sports medicine. J Knee Surg. 2015;28(1):55-62. doi:10.1055/s-0034-1398470.
37. Wang Y, Tian M, Wang F, et al. Understanding the Immunological Mechanisms of Mesenchymal Stem Cells in Allogeneic Transplantation: From the Aspect of Major Histocompatibility Complex Class I. Stem Cells Dev. 2019;28(17):1141-1150. doi:10.1089/scd.2018.0256.
38. Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74(13):2345-2360. doi:10.1007/s00018-017-2473-5.
39. Kiaie N, Aghdam RM, Tafti SHA, Gorabi AM. Stem Cell-Mediated Angiogenesis in Tissue Engineering Constructs. Curr Stem Cell Res Ther. 2019;14(3):249-258. doi:10.2174/1574888X13666181105145144.
40. Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. Adv Exp Med Biol. 2018;1060:73-98. doi:10.1007/978-3-319-78127-3_5.
41. Ko HR, Ahn SY, Chang YS, et al. Human UCB-MSCs treatment upon intraventricular hemorrhage contributes to attenuate hippocampal neuron loss and circuit damage through BDNF-CREB signaling. Stem Cell Res Ther. 2018;9(1):326. doi:10.1186/s13287-018-1052-5.
PMid:30463591 PMCid:PMC6249960
42. Gobshtis N, Tfilin M, Wolfson M, Fraifeld VE, Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget. 2017;8(11):17443-17452. doi:10.18632/oncotarget.15245.
PMid:28407680 PMCid:PMC5392261
43. Yarmolyuk E.S. Vpliv tkaninnoї transplantacії na angіogenez v dіlyancі іshemіchnogo ushkodzhennya golovnogo mozku v eksperimentі [disertacіya]. Kiїv (Ukraїna): Іnstitut nejrohіrurgії іm. akad. A. P. Romodanova NAMN Ukraїni; 2016 [in Ukrainian].
44. Gu J, Huang L, Zhang C, et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther. 2020;11(1):43. Published 2020 Feb 3. doi:10.1186/s13287-019-1545-x.
PMid:32014055 PMCid:PMC6998370
45. Elgaz S, Kuçi Z, Kuçi S, Bönig H, Bader P. Clinical Use of Mesenchymal Stromal Cells in the Treatment of Acute Graft-versus-Host Disease. Transfus Med Hemother. 2019;46(1):27-34. doi:10.1159/000496809.
PMid:31244579 PMCid:PMC6558336
46. Xie B, Chen M, Hu R, Han W, Ding S. Therapeutic Evidence of Human Mesenchymal Stem Cell Transplantation for Cerebral Palsy: A Meta-Analysis of Randomized Controlled Trials. Stem Cells Int. 2020;2020:5701920. doi:10.1155/2020/5701920/
PMid:32765613 PMCid:PMC7387980
47. Wang X, Hu H, Hua R, et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy. 2015;17(2):224-231. doi:10.1016/j.jcyt.2014.09.010/
48. Fu X, Hua R, Wang X, et al. Synergistic Improvement in Children with Cerebral Palsy Who Underwent Double-Course Human Wharton’s Jelly Stem Cell Transplantation. Stem Cells Int. 2019;2019:7481069. Published 2019 Sep 17. doi:10.1155/2019/7481069.
PMid:31636676 PMCid:PMC6766101
49. Sun JM, Song AW, Case LE, et al. Effect of Autologous Cord Blood Infusion on Motor Function and Brain Connectivity in Young Children with Cerebral Palsy: A Randomized, Placebo-Controlled Trial. Stem Cells Transl Med. 2017;6(12):2071-2078. doi:10.1002/sctm.17-0102/
50. Chen G, Wang Y, Xu Z, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21. Published 2013 Jan 26. doi:10.1186/1479-5876-11-21/
PMid:23351389 PMCid:PMC3563497
51. Min K, Song J, Kang JY, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581-591. doi:10.1002/stem.1304/
PMid:23281216 PMCid:PMC3744768
52. Miao X, Wu X, Shi W. Umbilical cord mesenchymal stem cells in neurological disorders: A clinical study. Indian J Biochem Biophys. 2015;52(2):140-146.
53. Novak I, Walker K, Hunt RW, Wallace EM, Fahey M, Badawi N. Concise Review: Stem Cell Interventions for People With Cerebral Palsy: Systematic Review With Meta-Analysis. Stem Cells Transl Med. 2016;5(8):1014-1025. doi:10.5966/sctm.2015-0372.
PMid:27245364 PMCid:PMC4954458
54. Eggenberger S, Boucard C, Schoeberlein A, et al. Stem cell treatment and cerebral palsy: Systemic review and meta-analysis. World J Stem Cells. 2019;11(10):891-903. doi:10.4252/wjsc.v11.i10.891.
PMid:31692977 PMCid:PMC6828595

Petriv T, Tatarchuk M, Tsymbaliuk Ya, Tsymbaliuk Yu, Tsymbaliuk V. Stem cells transplantation in the treatment of patients with cerebral palsy. Cell Organ Transpl. 2020; 8(1):76-80. doi:10.22494/cot.v8i1.107

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.