The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination

Home/2020, Vol. 8, No. 1/The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination

Cell and Organ Transplantology. 2020; 8(1):38-42.
DOI: 10.22494/cot.v8i1.106

The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination

Labunets I.1, Utko N.1, Toporova O.1,2, Panteleymonova T.1, Rodnichenko A.1, Butenko G.1

  • 1State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 2Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract

The transplantation of umbilical cord multipotent mesenchymal stromal cells (UC-MMSCs) is a promising strategy in treatment of multiple sclerosis. The features of cells effect in the recipients of different ages, as well as the ways of its implementation, remain poorly understood.
Purpose. To study the effect of UC-MMSCs transplantation on the behaviour, oxidative stress factors and antioxidant protection in the brain of mice of different ages with an experimental model of multiple sclerosis.
Materials and methods.  Male 129/Sv mice 6-7 months old and 14-16 months old were received neurotoxin cuprizone with food for 3 weeks. Since the 10th day of the cuprizone diet, human UC-MMSCs were injected intravenously at a dose of 5·105 cells per mice. We evaluated the parameters of behaviour in the open field test and rotarod test. The level of malondialdehyde (MDA) and the activity of antioxidant enzymes were studied in the brain.
Results. In mice of both age groups with a cuprizone diet, motor, emotional and exploratory activity decreases. The level of MDA in the brain increases and the activity of antioxidant enzymes decreases. The transplantation of UC-MMSCs leads to positive changes in the behaviour of mice with a cuprizone diet. In the adults, the motor and emotional activity improved; in the aging ones exploratory activity and muscle tone increased. After the injection of UC-MMSCs in adult mice, the level of MDA in the brain decreases.
Conclusion. The therapeutic effect of transplanted UC-MMSCs on the behavioural parameters and MDA level in the brain of mice with a cuprizone model of demyelination largely depends on their age and is more pronounced in adult animals.

Key words: umbilical cord multipotent mesenchymal stromal cells; demyelination; cuprizone; behaviour; oxidative stress

 

Full Text PDF (eng) Full Text PDF (ru)

  1. Mishchenko ES, Shulga OD, Bobrik NV, Shulga LA. Rozsіjanij skleroz: global’nі perspektivi [Multiple sclerosis: global perspectives]. Ukr med Chasopis – Ukr Med J. 2014; 101(3):84-87. [In Ukrainian]
    Sarcar P, Rice CM, Scolding NJ. Cell therapy for multiple sclerosis. CNS Drugs. 2017; 31: 453-469. DOI:10.1007/s40263-017-0429-9.
    https://doi.org/10.1007/s40263-017-0429-9
    PMid:28397112
    Genc B, Bozan HR, Genc S, Genc K. Stem cell therapy for multiple sclerosis. Adv Exp Med Biol. 2019; 1084:145-174. DOI: 1007/5584_2018_247.
    https://doi.org/10.1007/5584_2018_247
    PMid:30039439
    Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome. Cytotherapy. 2016; 18:13-24. DOI:10.1016/j.jcyt.2015.10.008.
    https://doi.org/10.1016/j.jcyt.2015.10.008
    PMid:26631828 PMCid:PMC4924535
    Zachar L, Bacenlova D, Rosocher I. Activation, homing and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res. 2016; 9:231-240. DOI:10.2147/JIR.S121994.
    https://doi.org/10.2147/JIR.S121994
    PMid:28008279 PMCid:PMC5170601
    Wojtas E, Zachwieja A, Zwyrzykowska A, Kupczynski R, Marycz K. The application of mesenchymal progenitor stem cells in the reduction of oxidative stress in animals. Turk J Biol. 2017; 41:12-19. DOI:10.3906/biy-1603-13.
    https://doi.org/10.3906/biy-1603-13
    Laroni A, Kerlego de Rosbo N, Uccelli A. Mesenchymal stem cells for the treatment of neurological diseases: immunoregulation beyond neuroprotection. Immunology letter. 2015; 168:183-190. http://dx.doi.org/10.1016/j.imlet.2015.08.007.
    https://doi.org/10.1016/j.imlet.2015.08.007
    PMid:26296458
    Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantation: a systemic analysis of clinical trials. Cytotherapy. 2017; 19(12):1351-1382. DOI:10.1016/j.cyt.2017.08.004.
    https://doi.org/10.1016/j.jcyt.2017.08.004
    PMid:28964742
    Maslova OO, Shyvalova NS, Sukhorada OM, Zkukova SM, Deryabina OG, Makarenko MV, et al. Heterogeneity of umbilical cords as a source for MSC. Dataset Papers in biology. Article ID 370103. http://dx.doi.org/10.7167/2013/370103.
    https://doi.org/10.7167/2013/370103
    ElOmar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells-based therapies? Tissue Eng, Part B Rev. 2014; 20(5):523-544. DOI:10.1089/ten.TEB.2013.0664.
    https://doi.org/10.1089/ten.teb.2013.0664
    PMid:24552279
    Putra A, Ridwan ВR, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NACh, et al. The role of TNF-alpha induced MSCs on suppressive inflammation by increasing TGF-beta and IL-10. Open Access Maced J Med Sci. 2018; 6(10):1779-1783.
    https://doi.org/10.3889/oamjms.2018.404
    PMid:30455748 PMCid:PMC6236029
    Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW. Functional module analysis reveals differential 0steogenic and stemness potentials in human mesenchymal stem cells from-bone marrow and Wharton’s jelly of the umbilical cord. Stem Cells Dev. 2010; 19 1895-1910. https://doi.org/10.1089/scd.2009.0485.PMID:20367285.
    https://doi.org/10.1089/scd.2009.0485
    PMid:20367285
    Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014; 34(3):695-704. DOI:10.3892/ijmm.2014.1821.
    https://doi.org/10.3892/ijmm.2014.1821
    PMid:24970492 PMCid:PMC4121354
    Tsymbaliuk VI, Velychko OM, Pichkur OL, Verbovska SA, Shuvalova NS, Toporova ОК, et al. Effects of Warton’s jelly humans mesenchymal stem cells transfected with plasmid containing il-10 gene to the behavioral response in rats with experimental allergic encephalomyelitis. JCOT. 2015; 3(2):139-143. DOI: 10.22494/COT.V3I2.14.
    https://doi.org/10.22494/COT.V3I2.14
    Vaslovich VV, Pichkur LD, Malysheva TA, Akinola ST, Verbovska SA, Toporova OK, et al. Ul’trastrukturnі zmіni spinnogo mozku shhurіv z eksperimental’nim alergіchnim encefalomієlіtom pіd vplivom mezenhіmal’nih stovburovih klіtin ta іnterlejkіna-10 [Ultrastructural changes in the spinal cord of rats with experimental allergic encephalomyelitis under the influence of mesenchymal stem cells and interleukin-10]. Zhurnal klinicheskikh i eksperimental’nykh meditsinskikh issledovaniy – Journal of Clinical and Experimental Medical Research. 2 6(1):17-30. [In Ukrainian]
    Scruggs BA, Semon JA, Zhang X, Zhang Sh, Bowles AS, Pandey AC, et al. Age of the donor reduces the ability of human adipose derived stem cells to alleviate symptoms in the experimental autoimmune encephalomyelitis mouse model. Stem Cells Transl Med. 2013; 2:797-807. http://dx.doi.org/10.5966/sctm.2013-0026.
    https://doi.org/10.5966/sctm.2013-0026
    PMid:24018793 PMCid:PMC3785264
    Shen J, Tsai Y-T, Di Marco NM, Lang MA, Sun X, Tang Transplantation of mesenchymal stem cells from young donors delays aging in mice. Scientific reports. 2011; 1:67. DOI:10.1038/srep00067.
    https://doi.org/10.1038/srep00067
    PMid:22355586 PMCid:PMC3216554
    Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. J Neubiorev. 2014; 47:485-505. doi.org/10.10161/j.neubiorev.2014.10.004.
    https://doi.org/10.1016/j.neubiorev.2014.10.004
    PMid:25445182
    Labunets IF, Rodnichenko AE, Melnyk NO, Rymar SE, Utko NA, Gavrulyk-Skyba GO, et al. Neuroprotective effect of the recombinant human leukemia inhibitory factor in mice with an experimental cuprizone model of multiple sclerosis: possible mechanisms. Biopolym Cell. 2018; 34(5):350-360. DOI: http;//dx.doi.org/10.7124/bc000989.
    https://doi.org/10.7124/bc.000989
    Nessler J, Benardais K, Gudi V, Hoffman A, Tejedor LS, JanBen S, et al. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PloS ONE.2013; 8(7):69795-8. DOI:10.1371/journal.pone 0069795.
    https://doi.org/10.1371/journal.pone.0069795
    PMid:23922802 PMCid:PMC3724887
    Amikishieva AV. Povedencheskoe fenotipirovanie: sovremennye metody i oborudovanie [Behavioral phenotyping: modern methods and equipment]. Vestnik VOGiS – VOGiS Herald. 2009; 13(3):529-542. [In Russian]
    Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1):271-278.
    https://doi.org/10.1016/0003-2697(78)90342-1
    Labunets IF, Talanov SA, Vasilyev RG, Rodnichenko AYe, Utko NO, Kuzminov IA, et al. Thymic hormones, antioxidant enzymes and neurogenesis in bulbus olfactorius of rats with hemiparkinsonism: effect of melatonin. Int J Phys Pathophys. 2016; 7(4):285-298. DOI: 10.1615/IntJPhysPathophys.v7.i4.10.
    https://doi.org/10.1615/IntJPhysPathophys.v7.i4.10
    Serra-de-Oliveria N, Boilesen SN, Prado de Franca Carvalho C, Lesueur-maluf L, Zollner R, Spadari LC, et al. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res. 2015; 287:265-275. DOI: 10.1016/j.bbr.2015.03.038.
    https://doi.org/10.1016/j.bbr.2015.03.038
    PMid:25843560
    Labunets IF, Melnyk NO, Rodnichenko AE, Rymar SE, Utko NA. Cuprizone-induced disorders of the central nervous system neurons, behavioral reactions, brain activity of macrophages and antioxidant enzymes in the mice of different ages:role of leukemia inhibitory factor in their improvement. J Aging Geriat Med. 2017; 1(2):1-8. DOI:10.4172/AGM.1000104.
    Labunets IF, Rodnichenko AYe. Effekty melatonina u molodykh i stareyushchikh myshey s toksicheskoy kuprizonovoy molel’yu demielinizatsii [Melatonin Effects in Young and Aging Mice with the Toxic Cuprizone-Induced Demyelination]. Uspekhi gerontol – Adv Gerontol. 2019; 32(3):338-346. [In Russian]
    Mukai T, Mon Y, Shimazu T, Takahashi A, Tsunoda H, Yamaquchi S, et al. Intravenous injection of umbilical cord-derived mesenchymal stromal cells attrnuates reactive gliosis and hypomyelination in neonatal intraventricular hemorrhage model. 2017; 355:175-187. DOI:10.1016/j.neuroscience.2017.05.006.
    https://doi.org/10.1016/j.neuroscience.2017.05.006
    PMid:28504197
    Pichkur LD, Kovalchuk MV, Deryabina OG, Verbovska SA, Akinola ST, Shuvalova NS, et al. Vizhivannya transplantovanikh mezenkhіmal’nikh stovburovikh klіtin vartonovikh draglіv pupovini lyudini v tsentral’nіy nervovіy sistemі shurіv pri eksperimental’nomu alergіchnomu entsefalomієlіtі pіslya їkh suboktsipіtal’nogo vvedennya [The survival of transplanted mesenchymal stem cells from humans Wharton’s jelly of the umbilical cord in the central nervous system of rats with experimental allergic encephalomyelitis after their suboccipital injection]. Ukr neyrokhіrurg zhurn – Ukr Neurosurg J. 2017; 3:30-35. DOI:http://doi.org/10.25305/unj.112102. [In Ukrainian] https://doi.org/10.25305/unj.112102
    Kamphuis WW, Derada TC, Reijerkerk A, Romero IA, deVries HE. The blood-brain barrier in multiple sclerosis:microRNAs as key regulators. CNS Neurol Disord Drug Targets. 2015; 14:157-167. DOI:10.2174/1871527314666150116125246.
    https://doi.org/10.2174/1871527314666150116125246
    PMid:25613507
    Abakumova TO, Kuz’kina AA, Zharova ME, Pozdeeva DA, Gubskii IL, Shepeleva II, et al. Kuprizonovaya model’ kak instrument dlya doklinicheskogo issledovaniya effektivnosti diagnostiki i terapii rasseyannogo skleroza [Cuprizone model as a tool for preclinical studies of the efficacy of multiple sclerosis diagnosis and therapy]. Byull eksperim biol med. 2015; 159(1):124-128. https://rucont.ru/efd/353967. [In Russian] https://doi.org/10.1007/s10517-015-2903-z
    PMid:26028235
    El-Akabawy G, Rashed IA. Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. Ann Anat. 2015; 198:11-20. http://dx.doi.org/10.1016/j.aanat.2014.12.002.
    https://doi.org/10.1016/j.aanat.2014.12.002
    PMid:25660362
    Lukhmus O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, et al. Intravenously injected mesenchymal stem cells penetrate the brain and treat inflammation-induced brain damage and memory impairment in mice. Front Pharmacol. 2019; 10:Article 355. DOI:10.3389/fphar.2019.00355.
    https://doi.org/10.3389/fphar.2019.00355
    PMid:31057400 PMCid:PMC6479176
    Dabrowski FA, Burdzinska A. Kulesza A, Sladowska A, Zolocinska A, Gala K, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res. 2017; 43(11):1758-1768. DOI:10.1111/jog.13432.
    https://doi.org/10.1111/jog.13432
    PMid:28707770

Labunets I, Utko N, Toporova O, Panteleymonova T, Rodnichenko A, Butenko G. The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination. Cell Organ Transpl. 2020; 8(1):38-42. doi:10.22494/cot.v8i1.106

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.