Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Home/2020, Vol. 8, No. 1/Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Cell and Organ Transplantology. 2020; 8(1):26-31.
DOI: 10.22494/cot.v8i1.105

Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Panteleichuk A.¹, Kadzhaya M.¹, Biloschytsky V.2, Shmeleva A.3, Petriv T.4, Gnatyuk O.5, Dovbeshko G.5, Kozakevych R.6, Tyortyh V.6

  • 1Department of neurotrauma, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 2Chronic pain treatment group, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 3Department of Neuropatomorphology, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 4Department of Reconstructive Neurosurgery with X-ray surgery, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 5Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv,  Ukraine
  • 6Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract

The duraplasty is a standard procedure during neurosurgery for injuries and diseases of the brain. The hermetic closure of the dura mater (DM) not always possible with the application of autologous tissues. Synthetic, allogeneic and xenogenic implants, which are currently used, have disadvantages, so the search for the material that would best meet the requirements for a DM scaffold continues.
The purpose is to study the physical and chemical properties of the composite chitosan/polyethylene oxide (PEO) film and determine the effectiveness of its application for duraplasty in the experiment in vivo; to analyze its ability to biodegradation; to evaluate the effect of chitosan/PEO scaffold on the regeneration of dura matter.
Materials and methods. The experiment used 10 white rats aged 12 months with a penetrating traumatic brain injury model. Postoperative material was examined by macroscopy, optical microscopy and infrared spectroscopy.
Results. According to the analysis of infrared absorption, spectral markers of scar tissue, regenerating DM and intact DM were determined. Oscillation spectroscopy data indicate degradation of the chitosan film and repair of normal DM. Histology data also indicate biological degradation of the chitosan film and its replacement by newly formed normal connective tissue.
Conclusion. The data of morphological and spectroscopic studies show the ability of chitosan/PEO film to biodegradation in vivo with followed replacement not by scar but by normal connective tissue.

Key words: chitosan; polyethylene oxide; penetrating traumatic brain injury; infrared spectroscopy; morphological studies

 

Full Text PDF (eng) Full Text PDF (ua)

  1. MacEwan MR, Kovacs T, Osbun J, Ray Wilson Z Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdisciplinary Neurosurgery. 2018, 13: 145-150. doi: 10.1016/j.inat.2018.05.001.4
    https://doi.org/10.1016/j.inat.2018.05.001
    Matula C, Kjaersgaard L, Di Ieva A. Watertight dural closure in brain surgery: a simple model for training. J Neurol Surg A Cent Eur Neurosurg. 2014; 75(3): 241-5. doi: 10.1055/s-0033-1342928. PubMed PMID: 23681920
    https://doi.org/10.1055/s-0033-1342928
    PMid:23681920
    Abuzayed B, Kafadar AM, Oguzoglu SA, Canbaz B, Kaynar MY. Duraplasty using autologous fascia lata reinforced by on-site pedicled muscle flap: technical note. J Craniofac Surg. 2009; 20(2): 435-8. doi: 10.1097/scs.0b013e31819b968f. PubMed PMID: 19326487
    https://doi.org/10.1097/SCS.0b013e31819b968f
    PMid:19326487
    Hongtao Sun, Hongda Wang, Yunfeng Diao, Yue Tu, Xiaohong Li, Wanyong Zhao, Jibin Ren, Sai Zhang Large retrospective study of artificial dura substitute in patients with traumatic brain injury undergo decompressive craniectomy Brain Behav. 2018; 8(5): e00907 doi: 10.1002/brb3.907 PMID: 29761002 PMCID: PMC5943738
    https://doi.org/10.1002/brb3.907
    PMid:29761002 PMCid:PMC5943738
    Miyake S, Fujita A, Aihara H, Kohmura E. New technique for decompressive duraplasty using expanded polytetrafluoroethylene dura substitute–technical note. Neurol Med Chir (Tokyo). 2006; 46(2):104-6; discussion 106. PMID: 16498223 DOI: 10.2176/nmc.46.104
    https://doi.org/10.2176/nmc.46.104
    PMid:16498223
    Schmalz P, Griessenauer C, Ogilvy CS, Thomas AJ. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: a technical note. Cureus. 2018;10 (1):e2127 doi: 10.7759/cureus.2127. PubMed PMID: 29607275; PubMed Central PMCID: PMC5875978
    https://doi.org/10.7759/cureus.2127
    PMid:29607275 PMCid:PMC5875978
    Hoell T, Hohaus C, Huschak G, Beier A, Meisel HJ. Total dura substitute in the spine: double layer dural substitute made from polylactide layer and bovine pericardium. Acta Neurochir (Wien). 2007; 149(12):1259-62; doi: 10.1007/s00701-007-1414-8. PMID: 17978882
    https://doi.org/10.1007/s00701-007-1414-8
    PMid:17978882
    Narotam PK, Van Dellen JR, Bhoola K, Raidoo D. Experimental evaluation of collagen sponge as a dural graft. Br J Neurosurg. 1993; 7(6): 635-41; doi: 10.3109/02688699308995092. PubMed PMID: 8161425
    https://doi.org/10.3109/02688699308995092
    PMid:8161425
    Pettorini BL, Tamburrini G, Massimi L, Paternoster G, Caldarelli M, Di Rocco C. The use of a reconstituted collagen foil dura mater substitute in paediatric neurosurgical procedures – Experience in 47 patients Br J Neurosurg. 2010; 24(1): 51-4. doi: 10.3109/02688690903386991. PubMed PMID: 20158353
    https://doi.org/10.3109/02688690903386991
    PMid:20158353
    Azzam D, Romiyo P, Nguyen T, Sheppard JP, Alkhalid Y, Lagman C, Prashant GN, Yang I Dural Repair in Cranial Surgery Is Associated with Moderate Rates of Complications with Both Autologous and Nonautologous Dural Substitutes. World Neurosurg. 2018; 113:244-248. doi: 10.1016/j.wneu.2018.01.115
    https://doi.org/10.1016/j.wneu.2018.01.115
    PMid:29374609
    Арутюнов, А.И., Н.Ш. Месхия. Некоторые актуальные вопросы пластики дефектов твёрдой мозговой оболочки. Вопросы нейрохирургии. 1972; 3: 3-9
    Kizmazoglu C, Aydin HE, Kaya I, Atar M, Husemoglu B, Kalemci O, Sozer G, Havitcioglu H Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater : An In Vitro Study J Korean Neurosurg Soc. 2019; 62(6):635-642. doi: 10.3340/jkns.2019.0122. PMID: 31679317 PMCID: PMC6835148
    https://doi.org/10.3340/jkns.2019.0122
    PMid:31679317 PMCid:PMC6835148
    Rosen CL, Steinberg GK, DeMonte F, Delashaw JB Jr, Lewis SB, Shaffrey ME, Aziz K, Hantel J, Marciano FF. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery. 2011; 69 (5): 1093-103; discussion 1103-4. doi: 10.1227/NEU.0b013e3182284aca. PubMed PMID: 21670715
    https://doi.org/10.1227/NEU.0b013e3182284aca
    PMid:21670715
    Sandoval-Sanchez JH, Ramos-Zuniga R, de Anda SL, et al. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World neurosurgery. 2012; 77(3-4):577-582. doi:10.1016/j.wneu.2011.07.007
    https://doi.org/10.1016/j.wneu.2011.07.007
    PMid:22120335
    Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries–a retrospective case series. Neurosurgery. 2012;71(2 Suppl Operative):ons302‐ doi:10.1227/NEU.0b013e31826a8ab0
    https://doi.org/10.1227/NEU.0b013e31826a8ab0
    PMid:22843136
    Hoover DA, Mahmood A. Ossification of autologous pericranium used in duraplasty. Case report. J Neurosurg. 2001; 95(2):350‐ doi:10.3171/jns.2001.95.2.0350
    https://doi.org/10.3171/jns.2001.95.2.0350
    PMid:11780910
    Stevens EA, Powers AK, Sweasey TA, Tatter SB, Ojemann RG. Simplified harvest of autologous pericranium for duraplasty in Chiari malformation Type I. Technical note. J Neurosurg Spine. 2009;11(1):80‐ doi:10.3171/2009.3.SPINE08196
    https://doi.org/10.3171/2009.3.SPINE08196
    PMid:19569946
    Warren WL, Medary MB, Dureza CD, et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery. 2000;46(6):1391‐ doi:10.1097/00006123-200006000-00020
    https://doi.org/10.1097/00006123-200006000-00020
    PMid:10834644
    Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268‐ doi:10.1016/j.carbpol.2017.02.001
    https://doi.org/10.1016/j.carbpol.2017.02.001
    PMid:28325326
    Масленнікова Л.Д. Полімерні композити. 2011. Київ. 300.
    Guo W, Guo Q, Zhang S, Li J: Manufacturing of artificial dura mater with chitosan polylactic acid. Chin J Clin Rehabil 9:24-25, 2005
    Mengistu Lemma, S., F. Bossard, and M. Rinaudo, Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly (ethylene oxide) . International journal of molecular sciences, 2016. 17 (11). pii: E1790
    https://doi.org/10.3390/ijms17111790
    PMid:27792192 PMCid:PMC5133791
    Reed AM, Gilding DK. Biodegradable polymers for use in surgery-Poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation. Polymer 1981, 22, 499-504
    https://doi.org/10.1016/0032-3861(81)90169-5
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1‐ doi:10.1016/j.colsurfb.2009.09.001
    https://doi.org/10.1016/j.colsurfb.2009.09.001
    PMid:19782542
    Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules. 2007;8(5):1505‐ doi:10.1021/bm061140p
    https://doi.org/10.1021/bm061140p
    PMid:17388625
    Basu A, Krady JK, O’Malley M, Styren SD, DeKosky ST, Levison SW. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J Neurosci. 2002;22(14):6071‐ doi:10.1523/JNEUROSCI.22-14-06071.2002
    https://doi.org/10.1523/JNEUROSCI.22-14-06071.2002
    PMid:12122068 PMCid:PMC6757935
    Dimzon IK, Knepper TP. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol. 2015;72:939‐ doi:10.1016/j.ijbiomac.2014.09.050
    https://doi.org/10.1016/j.ijbiomac.2014.09.050
    PMid:25316417
    Kumirska J, Czerwicka M, Kaczyński Z, et al. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs. 2010;8(5):1567‐ Published 2010 Apr 29. doi:10.3390/md8051567
    https://doi.org/10.3390/md8051567
    PMid:20559489 PMCid:PMC2885081
    Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M. FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(4):784‐ doi:10.1016/j.saa.2010.08.053
    https://doi.org/10.1016/j.saa.2010.08.053
    PMid:20864391
    Park, H.J., Lee, J.S., Lee, O.J. et al. Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Res. 2014; 22, 592-599. doi.org/10.1007/s13233-014-2083-0
    https://doi.org/10.1007/s13233-014-2083-0
    Yiin-Kuen Fuh, Shengzhan Chen & Jason S.C. Jang. Direct-write, Well-aligned Chitosan-Poly (ethylene oxide) Nanofibers Deposited via Near-field Electrospinning, Journal of Macromolecular Science, Part A: Pureand Applied Chemistry. 2012; 49:10, 845-850, doi: 10.1080/10601325.2012.714676
    https://doi.org/10.1080/10601325.2012.714676
    Svetlana Zivanovic, Jiajie Li, P. Michael Davidson and Kevin Kit. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films. Biomacromolecules. 2007; 8,1505-1510. org/10.1021/bm061140p
    https://doi.org/10.1021/bm061140p
    PMid:17388625
    Katalinich, M. Characterization of Chitosan Films for Cell CultureApplications; The University of Maine, 2001
    Foster LJ, Ho S, Hook J, Basuki M, Marçal H. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS One. 2015;10(8):e0135153. Published 2015 Aug 25. doi:10.1371/journal.pone.0135153
    https://doi.org/10.1371/journal.pone.0135153
    PMid:26305690 PMCid:PMC4549144
    Pre-Clinical Evaluation of Collagen Dura Substitutes in a Rabbit Duraplasty Model: DuraMatrix. 2015.

Panteleichuk A., Kadzhaya M, Biloschytsky V, Shmeleva A, Petriv T , Gnatyuk O, Dovbeshko G, Kozakevych R, Tyortyh V. Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats. Cell Organ Transpl. 2020; 8(1):26-31. doi:10.22494/cot.v8i1.105

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.