Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Home/2020, Vol. 8, No. 1/Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Cell and Organ Transplantology. 2020; 8(1):26-31.
DOI: 10.22494/cot.v8i1.105

Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats

Panteleichuk A.¹, Kadzhaya M.¹, Biloschytsky V.2, Shmeleva A.3, Petriv T.4, Gnatyuk O.5, Dovbeshko G.5, Kozakevych R.6, Tyortyh V.6

  • 1Department of neurotrauma, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 2Chronic pain treatment group, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 3Department of Neuropatomorphology, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 4Department of Reconstructive Neurosurgery with X-ray surgery, Romodanov State Institute of Neurosurgery of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 5Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv,  Ukraine
  • 6Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine


The duraplasty is a standard procedure during neurosurgery for injuries and diseases of the brain. The hermetic closure of the dura mater (DM) not always possible with the application of autologous tissues. Synthetic, allogeneic and xenogenic implants, which are currently used, have disadvantages, so the search for the material that would best meet the requirements for a DM scaffold continues.
The purpose is to study the physical and chemical properties of the composite chitosan/polyethylene oxide (PEO) film and determine the effectiveness of its application for duraplasty in the experiment in vivo; to analyze its ability to biodegradation; to evaluate the effect of chitosan/PEO scaffold on the regeneration of dura matter.
Materials and methods. The experiment used 10 white rats aged 12 months with a penetrating traumatic brain injury model. Postoperative material was examined by macroscopy, optical microscopy and infrared spectroscopy.
Results. According to the analysis of infrared absorption, spectral markers of scar tissue, regenerating DM and intact DM were determined. Oscillation spectroscopy data indicate degradation of the chitosan film and repair of normal DM. Histology data also indicate biological degradation of the chitosan film and its replacement by newly formed normal connective tissue.
Conclusion. The data of morphological and spectroscopic studies show the ability of chitosan/PEO film to biodegradation in vivo with followed replacement not by scar but by normal connective tissue.

Key words: chitosan; polyethylene oxide; penetrating traumatic brain injury; infrared spectroscopy; morphological studies


Full Text PDF (eng) Full Text PDF (ua)

  1. MacEwan MR, Kovacs T, Osbun J, Ray Wilson Z Comparative analysis of a fully-synthetic nanofabricated dura substitute and bovine collagen dura substitute in a large animal model of dural repair. Interdisciplinary Neurosurgery. 2018, 13: 145–150. doi: 10.1016/j.inat.2018.05.001.4
  2. Matula C, Kjaersgaard L, Di Ieva A. Watertight dural closure in brain surgery: a simple model for training. J Neurol Surg A Cent Eur Neurosurg. 2014; 75(3): 241-5. doi: 10.1055/s-0033-1342928. PubMed PMID: 23681920
  3. Abuzayed B, Kafadar AM, Oguzoglu SA, Canbaz B, Kaynar MY. Duraplasty using autologous fascia lata reinforced by on-site pedicled muscle flap: technical note. J Craniofac Surg. 2009; 20(2): 435-8. doi: 10.1097/scs.0b013e31819b968f. PubMed PMID: 19326487
  4. Hongtao Sun, Hongda Wang, Yunfeng Diao, Yue Tu, Xiaohong Li, Wanyong Zhao, Jibin Ren, Sai Zhang Large retrospective study of artificial dura substitute in patients with traumatic brain injury undergo decompressive craniectomy Brain Behav. 2018; 8(5): e00907 doi: 10.1002/brb3.907 PMID: 29761002 PMCID: PMC5943738
  5. Miyake S, Fujita A, Aihara H, Kohmura E. New technique for decompressive duraplasty using expanded polytetrafluoroethylene dura substitute–technical note. Neurol Med Chir (Tokyo). 2006; 46(2):104-6; discussion 106. PMID: 16498223 DOI: 10.2176/nmc.46.104
  6. Schmalz P, Griessenauer C, Ogilvy CS, Thomas AJ. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: a technical note. Cureus. 2018;10 (1):e2127 doi: 10.7759/cureus.2127. PubMed PMID: 29607275; PubMed Central PMCID: PMC5875978
  7. Hoell T, Hohaus C, Huschak G, Beier A, Meisel HJ. Total dura substitute in the spine: double layer dural substitute made from polylactide layer and bovine pericardium. Acta Neurochir (Wien). 2007; 149(12):1259-62; doi: 10.1007/s00701-007-1414-8. PMID: 17978882
  8. Narotam PK, Van Dellen JR, Bhoola K, Raidoo D. Experimental evaluation of collagen sponge as a dural graft. Br J Neurosurg. 1993; 7(6): 635-41; doi: 10.3109/02688699308995092. PubMed PMID: 8161425
  9. Pettorini BL, Tamburrini G, Massimi L, Paternoster G, Caldarelli M, Di Rocco C. The use of a reconstituted collagen foil dura mater substitute in paediatric neurosurgical procedures – Experience in 47 patients Br J Neurosurg. 2010; 24(1): 51-4. doi: 10.3109/02688690903386991. PubMed PMID: 20158353
  10. Azzam D, Romiyo P, Nguyen T, Sheppard JP, Alkhalid Y, Lagman C, Prashant GN, Yang I Dural Repair in Cranial Surgery Is Associated with Moderate Rates of Complications with Both Autologous and Nonautologous Dural Substitutes. World Neurosurg. 2018; 113:244-248. doi: 10.1016/j.wneu.2018.01.115
  11. Арутюнов, А.И., Н.Ш. Месхия. Некоторые актуальные вопросы пластики дефектов твёрдой мозговой оболочки. Вопросы нейрохирургии. 1972; 3: 3-9
  12. Kizmazoglu C, Aydin HE, Kaya I, Atar M, Husemoglu B, Kalemci O, Sozer G, Havitcioglu H Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater : An In Vitro Study J Korean Neurosurg Soc. 2019; 62(6):635-642. doi: 10.3340/jkns.2019.0122. PMID: 31679317 PMCID: PMC6835148
  13. Rosen CL, Steinberg GK, DeMonte F, Delashaw JB Jr, Lewis SB, Shaffrey ME, Aziz K, Hantel J, Marciano FF. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery. 2011; 69 (5): 1093-103; discussion 1103-4. doi: 10.1227/NEU.0b013e3182284aca. PubMed PMID: 21670715
  14. Sandoval-Sanchez JH, Ramos-Zuniga R, de Anda SL, et al. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World neurosurgery. 2012; 77(3-4):577-582. doi:10.1016/j.wneu.2011.07.007
  15. Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries–a retrospective case series. Neurosurgery. 2012;71(2 Suppl Operative):ons302‐ doi:10.1227/NEU.0b013e31826a8ab0
  16. Hoover DA, Mahmood A. Ossification of autologous pericranium used in duraplasty. Case report. J Neurosurg. 2001; 95(2):350‐ doi:10.3171/jns.2001.95.2.0350
  17. Stevens EA, Powers AK, Sweasey TA, Tatter SB, Ojemann RG. Simplified harvest of autologous pericranium for duraplasty in Chiari malformation Type I. Technical note. J Neurosurg Spine. 2009;11(1):80‐ doi:10.3171/2009.3.SPINE08196
  18. Warren WL, Medary MB, Dureza CD, et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery. 2000;46(6):1391‐ doi:10.1097/00006123-200006000-00020
  19. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268‐ doi:10.1016/j.carbpol.2017.02.001
  20. Масленнікова Л.Д. Полімерні композити. 2011. Київ. 300.
  21. Guo W, Guo Q, Zhang S, Li J: Manufacturing of artificial dura mater with chitosan polylactic acid. Chin J Clin Rehabil 9:24-25, 2005
  22. Mengistu Lemma, S., F. Bossard, and M. Rinaudo, Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly (ethylene oxide) . International journal of molecular sciences, 2016. 17 (11). pii: E1790
  23. Reed AM, Gilding DK. Biodegradable polymers for use in surgery—Poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation. Polymer 1981, 22, 499–504
  24. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1‐ doi:10.1016/j.colsurfb.2009.09.001
  25. Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules. 2007;8(5):1505‐ doi:10.1021/bm061140p
  26. Basu A, Krady JK, O’Malley M, Styren SD, DeKosky ST, Levison SW. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J Neurosci. 2002;22(14):6071‐ doi:10.1523/JNEUROSCI.22-14-06071.2002
  27. Dimzon IK, Knepper TP. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol. 2015;72:939‐ doi:10.1016/j.ijbiomac.2014.09.050
  28. Kumirska J, Czerwicka M, Kaczyński Z, et al. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs. 2010;8(5):1567‐ Published 2010 Apr 29. doi:10.3390/md8051567
  29. Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M. FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(4):784‐ doi:10.1016/j.saa.2010.08.053
  30. Park, H.J., Lee, J.S., Lee, O.J. et al. Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Res. 2014; 22, 592–599.
  31. Yiin-Kuen Fuh, Shengzhan Chen & Jason S.C. Jang. Direct-write, Well-aligned Chitosan-Poly (ethylene oxide) Nanofibers Deposited via Near-field Electrospinning, Journal of Macromolecular Science, Part A: Pureand Applied Chemistry. 2012; 49:10, 845-850, doi: 10.1080/10601325.2012.714676
  32. Svetlana Zivanovic, Jiajie Li, P. Michael Davidson and Kevin Kit. Physical, Mechanical, and Antibacterial Properties of Chitosan/PEO Blend Films. Biomacromolecules. 2007; 8,1505-1510. org/10.1021/bm061140p
  33. Katalinich, M. Characterization of Chitosan Films for Cell CultureApplications; The University of Maine, 2001
  34. Foster LJ, Ho S, Hook J, Basuki M, Marçal H. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties. PLoS One. 2015;10(8):e0135153. Published 2015 Aug 25. doi:10.1371/journal.pone.0135153
  35. Pre-Clinical Evaluation of Collagen Dura Substitutes in a Rabbit Duraplasty Model: DuraMatrix. 2015.

Panteleichuk A., Kadzhaya M, Biloschytsky V, Shmeleva A, Petriv T , Gnatyuk O, Dovbeshko G, Kozakevych R, Tyortyh V. Composite chitosan/polyethylene oxide film for duraplasty in traumatic brain injury model in rats. Cell and Organ Transplantology. 2020; 8(1):26-31. doi:10.22494/cot.v8i1.105

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.