The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Home/2020, Vol. 8, No. 1/The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Cell and Organ Transplantology. 2020; 8(1):in press.
DOI: 10.22494/cot.v8i1.104

The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Yavorovska V., Goliuk Ye., Magomedov O., Salmanova K., Saulenko K.

  • State Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine, Kyiv,  Ukraine

Abstract

The cellular composition significantly affects the properties of platelet concentrates. In particular, leukocyte platelet concentrates due to the increased number of monocytes and granulocytes have increased levels of proinflammatory cytokines, which contribute to the destruction of extracellular matrix, reduce synthesis of its components and enhance inflammation in tissues.
The purpose. To determine the blood cells number in leukocyte (L-PCP) or leukocyte-poor platelet-concentrated plasma (LP-PCP) and compare it with whole venous blood, plasma and platelet-poor plasma.
Materials and methods. 20 L-PCP and 21 LP-PCP samples were obtained by double centrifugation from the venous blood of 30 donors aged 26 to 78 with local pathology of the musculoskeletal system. In the first stage, plasma was isolated after the separation of whole blood, and in the second stage, platelets were concentrated in a small volume of platelet-poor plasma. The number of blood cells in the test samples was determined by hematology analyzer.
Results. When comparing the platelet count in L-PCP and LP-PCP, no significant difference was found in platelet number (2803.2 ± 933.8·106 and 2260 ± 943.9·106 cells/mL, respectively). The efficiency of platelet concentration from the initial volume of whole blood for the methods of obtaining LP-PCP and L-PCP did not differ significantly and was 76.5 ± 23.4 % and 83 ± 24.9 %, respectively. Platelet count in L-PCP was 8, 13 and 239 times higher than in plasma, whole blood and platelet-poor plasma, respectively. While the number of platelets in LP-PCP exceeded their count in the same samples by 8, 11 and 194 times, respectively. The leukocyte number in leukocyte-poor and leukocyte plasma with platelet concentrate was 2.5 ± 1.2·106 and 5.9 ± 1.8·106 cells/mL, respectively. However, their number in LP-PCP was almost 2 times lower than in blood and 5 times higher compared with plasma. The number of leukocytes in L-PCP was 30 % higher than in the blood, and 6 times higher than in plasma. The erythrocyte number was reduced by 99 % in both types of plasma with platelet concentrate compared with their count in whole blood.
Conclusions. According to the parameter of platelet isolation from whole blood, the procedures for obtaining leukocyte or leukocyte-poor platelet-concentrated plasma belong to the methods with medium efficiency. The procedure for preparing L-PCP allows to get a product with an increased relative number of leukocytes. For both studied products it was possible to achieve a significant reduction in erythrocyte count.

Key words: platelet concentrates; platelet-rich plasma; platelet-concentrated plasma 

Full Text PDF (eng) Full Text PDF (ua)

  1. Akeda K, An HS, Okuma M, et al: Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartilage. 2006; 12:1272-1280. DOI:.org/10.1016/j.joca.2006.05.008.
  2. Alsousou J, Thompson M, Hulley P. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery. J Bone Joint Surg Br. 2009; 91(8):987-96. DOI:10.1302/0301-620X.91B8.22546.
  3. Anitua E, Andia I, Ardanza B. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004; 91:4-15. DOI:1160/TH03-07-0440.
  4. Anitua E, Orive G. Clinical outcome of immediately loaded dental implants bioactivated with plasma rich in growth factors: a 5-year retrospective study. J Periodontol. 2008; 79(7):1168-1176. DOI:10.1902/jop.2010.090637.
  5. Araki J, Jona M, Eto H. Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods 2012; 18(3):176-85. DOI:10.1089/ten.TEC.2011.0308.
  6. Assirelli E, Filardo G. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surg Sport Tra. 2015; 23(9):2690-2703. DOI:10.1007/s00167-014-3113-3.
  7. Berger DR, Centeno CJ, Steinmetz NJ. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration-dependent manner. Bone Joint Res. 2019; 8(1):32–40. DOI:10.1302/2046-3758.81.BJR-2018-0164.R1.
  8. Boswell SG, Schnabel LV, Mohammed HO. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagene synthesis in tendons. Am J Sports Med. 2014; 42(1):42-9. DOI:10.1177/0363546513507566.
  9. Braun HJ, Kim HJ, Chu CR. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med. 2014; 42(5):1204-10. DOI:10.1177/0363546514525593.
  10. Campbell KA, Minashima T. Annexin A6 interacts with p65 and stimulates NF-κB activity and catabolic events in articular chondrocytes.Arthritis Rheum. 2013; 65(12):3120-9. DOI:10.1002/art.38182.
  11. Centeno CJ, Pastoriza SM. Past, current and future interventional orthobiologics techniques and how they relate to regenerative rehabilitation: a clinical commentary. Int J Sports Phys Ther. 2020; 15(2):301-325.
  12. Chaly YV, Selvan RS, Fegeding KV. Expression of Il-8 gene in human monocytes and lymphocytes:dierential regulation by tnf and Il-1. Cytokine. 2000; 12:636-643. DOI:1006/cyto.1999.0664.
  13. Crane D, Everts P. Platelet rich plasma (PRP) matrix grafts. Pract PAIN Manag. 2008; 8(1):1-10.
  14. Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: An appraisal of theory and practice. Clin Exp Reprod Med. 2018; 45(2):67-74. DOI:10.5653/cerm.2018.45.2.67.
  15. de Melo BAG, Martins Shimojo AA. Distribution, recovery and concentration of platelets and leukocytes in L-PRP prepared by centrifugation. Colloid Surf B. 2018; 161:288-295. DOI:10.1016/j.colsurfb.2017.10.046.
  16. Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy – future or trend? Arthritis Res Ther. 2012; 14(4):219-229. DOI: 10.1186/ar3914.
  17. Dohan Ehrenfest DM, Rasmusson L. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. M.L.Т.J. 2014; 4(1):3-9.
  18. Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J Cosmet Dermatol. 2018; 17(3):423-430. DOI:10.1111/jocd.12404.
  19. Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006; 118(6):147-159. DOI:1097/01.prs.0000239606.92676.cf.
  20. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004; 114(6):1502-1508. DOI:1097/01.prs.0000138251.07040.51.
  21. Fortier LA, Hackett CH, Cole BJ. The effects of platelet-rich plasma on cartilage: basic science and clinical application. Oper Tech Sports Med. 2011; 19(3):154-159.
  22. Dahlgren LA, Mohammed HO, Nixon AJ. Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res. 2005; 23(1):84. org/10.1016/j.orthres.2004.05.007.
  23. Hooiveld MJ, Roosendaal G, van den Berg HM. Haemoglobin-derived iron-dependent hydroxyl radical formation in blood-induced joint damage: an in vitro study. Rheumatology. 2003; 42(6):784-90. DOI:10.1093/rheumatology/keg220.
  24. Hooiveld MJ, Roosendaal G. Blood-induced joint damage: longterm effects in vitro and in vivo.Arthritis Rheum. 2003; 48(2):396-403. DOI:1002/art.10769.
  25. Giusti I, D’Ascenzo S, Mancò A, Di Stefano G, Di Francesco M, Rughetti A, et al. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro. BioMed Res Int. 2014; 2014:630870.
  26. Giusti I,. Rughetti A, D’Ascenzo S. The effects of plateletgel-released supernatant on human fibroblasts. Wound Repair and Regeneration. 2013; 21(2):300-308. DOI:10.1111/wrr.12025.
  27. Giusti I, Rughetti A, D’Ascenzo S. Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion. 2009; 49(4):771-8. DOI: 10.1111/j.1537-2995.2008.02033.x.
  28. Magalon J, Chateau AL. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc Med. 2016; 2(1):1-5. DOI:1136/bmjsem-2015-000060.
  29. Mariani E, Canella V, Cattini L. Leukocyte-rich platelet-rich plasma injections do not up-modulate intra-articular pro-inflammatory cytokines in the osteoarthritic knee. PLoS One. 2016; 11(6):0156137. DOI:10.1371/journal.pone.0156137.
  30. Masuki H, Okudera T, Watanebe T. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent. 2016; 2(1):19. DOI:1186/s40729-016-0052-4.
  31. Marx RE: Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001; 10:225-228.21. DOI:1097/00008505-200110000-00002.
  32. Mazzocca AD, McCarthy MB. The positive effectsof different plateletrich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med. 2012; 40(8):1742-9. DOI:10.1177/0363546512452713.
  33. Melo BAG, Luzo ÂCM. Centrifugation conditions in the L-PRP preparation affect soluble factors release and mesenchymal stem cell proliferation in fibrin nanofibers molecules. 2019; 24(15):2729. DOI:10.3390/molecules24152729.
  34. Moatshe G, Morris ER. Biological treatment of the knee with platelet-rich plasma or bone marrow aspirate concentrates. Acta Orthop. 2017; 88(6):670-674. DOI:10.1080/17453674.2017.1368899.
  35. Noh KC, Liu XN, Zhuan Z, Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clin Orthop Surg. 2018; 10(2):240-247. DOI:10.4055/cios.2018.10.2.240.
  36. Rohman G, Langueh C. The Use of platelet-rich plasma to promote cell recruitment into low-molecular-weight. Polymers. 2019. DOI: 10.3390/polym11061016.
  37. Paterson KL, Hunter DJ, Metcalf BR. Efficacy of intra-articular1injections of platelet-rich plasma as a symptom- and disease-modifying treatment for knee osteoarthritis – the restore trial protocol. BMC Musculoskelet Disord. 2018; 19(1):272. DOI.org/10.1186/s12891-018-2205-5.
  38. Pauly S. The effect of autologous platelet rich plasma on tenocytes of the human rotator cuff BMC Musculoskelet Disord. 2018; 19(1):422. DOI:10.1186/s12891-018-2339-5.
  39. Pochini AC, Antonioli E, Bucci DZ. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns. Einstein. 2016; 14(3):391-397. DOI:10.1590/S1679-45082016AO3548.
  40. Taniguchi Y, Yoshioka T. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J Exp Orthop. 2019; 4. DOI:10.1186/s40634-019-0175-7.
  41. Samson M, Fraser W, Lebowitz D. Treatments for primary immune thrombocytopenia: A Review. Cureus. 2019, 11(10):5849. DOI:10.7759/cureus.5849.
  42. Vitale C. Autoimmune Complications in сhronic lymphocytic leukemia in the era of targeted drugs cancers (Basel). 2020; 12(2):282. DOI:10.3390/cancers12020282.
  43. Wang SZ, Fan WM, Jia J. Is exclusion of leukocytes from platelet-rich plasma (PRP) a better choice for early intervertebral disc regeneration? Stem Cell Res Ther. 2018; 9(1):199. DOI:10.1186/s13287-018-0937-7.
  44. Weibrich G, Kleis WK, Kunz-Kostomanolakis M. Correlation of platelet concentration in platelet-rich plasma to the extraction method, age, sex, and platelet count of the donor. Int J Oral Maxillofac Implants. 2001; 16(5):693-9.
  45. Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018; 6. DOI: 10.1038/s41413-017-0005-4.
  46. Xu Z, Yin W, Zhang Y. Comparative evaluation of leukocyte- and platelet-rich plasma and pure platelet-rich plasma for cartilage regeneration. Sci Rep. 2017; 7:43301. DOI:10.1038/srep43301.
  47. Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF. Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol. 2012; 13(7):1173-84. DOI:2174/ 138920112800624445.
  48. Yin W, Xin Q, Zhang Y. Advantages of pure platelet‑rich plasma compared with leukocyte‑ and platelet‑richplasma in promoting repair of bone defects. J Transl Med. 2016; 14:73. DOI:10.1186/s12967-016-0825-9.
  49. Yin WJ, Xu HT, Sheng JG. Advantages of pure platelet-rich plasma compared with leukocyte- and platelet-rich plasma in treating rabbit knee osteoarthritis. Med Sci Monit. 2016; 22:1280-90. DOI:10.12659/msm.898218.
  50. Zhou Y, Zhang J, Wu H. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells – implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015; 6:173. DOI:10.1186/s13287-015-0172-4.
  51. Zhang L, Chen S, Chang P. Harmful effects of leukocyte-rich platelet-rich plasma on rabbit tendon stem cells in vitro. Am J Sports Med. 2016; 44(8):1941-51. DOI:10.1177/0363546516644718.

Yavorovska V, Goliuk Ye, Magomedov O, Salmanova K, Saulenko K. The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders. Cell and Organ Transplantology. 2020; 8(1):in press. doi:10.22494/cot.v8i1.104

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.