The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Home/2020, Vol. 8, No. 1/The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Cell and Organ Transplantology. 2020; 8(1):13-19.
DOI: 10.22494/cot.v8i1.104

The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders

Yavorovska V., Goliuk Ye., Magomedov O., Salmanova K., Saulenko K.

  • State Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine, Kyiv,  Ukraine

Abstract

The cellular composition significantly affects the properties of platelet concentrates. In particular, leukocyte platelet concentrates due to the increased number of monocytes and granulocytes have increased levels of proinflammatory cytokines, which contribute to the destruction of extracellular matrix, reduce synthesis of its components and enhance inflammation in tissues.
The purpose. To determine the blood cells number in leukocyte (L-PCP) or leukocyte-poor platelet-concentrated plasma (LP-PCP) and compare it with whole venous blood, plasma and platelet-poor plasma.
Materials and methods. 20 L-PCP and 21 LP-PCP samples were obtained by double centrifugation from the venous blood of 30 donors aged 26 to 78 with local pathology of the musculoskeletal system. In the first stage, plasma was isolated after the separation of whole blood, and in the second stage, platelets were concentrated in a small volume of platelet-poor plasma. The number of blood cells in the test samples was determined by hematology analyzer.
Results. When comparing the platelet count in L-PCP and LP-PCP, no significant difference was found in platelet number (2803.2 ± 933.8·106 and 2260 ± 943.9·106 cells/mL, respectively). The efficiency of platelet concentration from the initial volume of whole blood for the methods of obtaining LP-PCP and L-PCP did not differ significantly and was 76.5 ± 23.4 % and 83 ± 24.9 %, respectively. Platelet count in L-PCP was 8, 13 and 239 times higher than in plasma, whole blood and platelet-poor plasma, respectively. While the number of platelets in LP-PCP exceeded their count in the same samples by 8, 11 and 194 times, respectively. The leukocyte number in leukocyte-poor and leukocyte plasma with platelet concentrate was 2.5 ± 1.2·106 and 5.9 ± 1.8·106 cells/mL, respectively. However, their number in LP-PCP was almost 2 times lower than in blood and 5 times higher compared with plasma. The number of leukocytes in L-PCP was 30 % higher than in the blood, and 6 times higher than in plasma. The erythrocyte number was reduced by 99 % in both types of plasma with platelet concentrate compared with their count in whole blood.
Conclusions. According to the parameter of platelet isolation from whole blood, the procedures for obtaining leukocyte or leukocyte-poor platelet-concentrated plasma belong to the methods with medium efficiency. The procedure for preparing L-PCP allows to get a product with an increased relative number of leukocytes. For both studied products it was possible to achieve a significant reduction in erythrocyte count.

Key words: platelet concentrates; platelet-rich plasma; platelet-concentrated plasma 

Full Text PDF (eng) Full Text PDF (ua)

Akeda K, An HS, Okuma M, et al: Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartilage. 2006; 12:1272-1280. DOI:.org/10.1016/j.joca.2006.05.008.
https://doi.org/10.1016/j.joca.2006.05.008
PMid:16820306
Alsousou J, Thompson M, Hulley P. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery. J Bone Joint Surg Br. 2009; 91(8):987-96. DOI:10.1302/0301-620X.91B8.22546.
https://doi.org/10.1302/0301-620X.91B8.22546
PMid:19651823
Anitua E, Andia I, Ardanza B. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004; 91:4-15. DOI:1160/TH03-07-0440.
https://doi.org/10.1160/TH03-07-0440
PMid:14691563
Anitua E, Orive G. Clinical outcome of immediately loaded dental implants bioactivated with plasma rich in growth factors: a 5-year retrospective study. J Periodontol. 2008; 79(7):1168-1176. DOI:10.1902/jop.2010.090637.
https://doi.org/10.1902/jop.2010.090637
PMid:20450361
Araki J, Jona M, Eto H. Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods 2012; 18(3):176-85. DOI:10.1089/ten.TEC.2011.0308.
https://doi.org/10.1089/ten.tec.2011.0308
PMid:21951067 PMCid:PMC3285602
Assirelli E, Filardo G. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surg Sport Tra. 2015; 23(9):2690-2703. DOI:10.1007/s00167-014-3113-3.
https://doi.org/10.1007/s00167-014-3113-3
PMid:24942296 PMCid:PMC4541703
Berger DR, Centeno CJ, Steinmetz NJ. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration-dependent manner. Bone Joint Res. 2019; 8(1):32-40. DOI:10.1302/2046-3758.81.BJR-2018-0164.R1.
https://doi.org/10.1302/2046-3758.81.BJR-2018-0164.R1
PMid:30800297 PMCid:PMC6359887
Boswell SG, Schnabel LV, Mohammed HO. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagene synthesis in tendons. Am J Sports Med. 2014; 42(1):42-9. DOI:10.1177/0363546513507566.
https://doi.org/10.1177/0363546513507566
PMid:24136860
Braun HJ, Kim HJ, Chu CR. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med. 2014; 42(5):1204-10. DOI:10.1177/0363546514525593.
https://doi.org/10.1177/0363546514525593
PMid:24634448 PMCid:PMC5878923
Campbell KA, Minashima T. Annexin A6 interacts with p65 and stimulates NF-κB activity and catabolic events in articular chondrocytes.Arthritis Rheum. 2013; 65(12):3120-9. DOI:10.1002/art.38182.
https://doi.org/10.1002/art.38182
PMid:24022118
Centeno CJ, Pastoriza SM. Past, current and future interventional orthobiologics techniques and how they relate to regenerative rehabilitation: a clinical commentary. Int J Sports Phys Ther. 2020; 15(2):301-325.
https://doi.org/10.26603/ijspt20200301
Chaly YV, Selvan RS, Fegeding KV. Expression of Il-8 gene in human monocytes and lymphocytes:dierential regulation by tnf and Il-1. Cytokine. 2000; 12:636-643. DOI:1006/cyto.1999.0664.
https://doi.org/10.1006/cyto.1999.0664
PMid:10843739
Crane D, Everts P. Platelet rich plasma (PRP) matrix grafts. Pract PAIN Manag. 2008; 8(1):1-10.
Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: An appraisal of theory and practice. Clin Exp Reprod Med. 2018; 45(2):67-74. DOI:10.5653/cerm.2018.45.2.67.
https://doi.org/10.5653/cerm.2018.45.2.67
PMid:29984206 PMCid:PMC6030616
de Melo BAG, Martins Shimojo AA. Distribution, recovery and concentration of platelets and leukocytes in L-PRP prepared by centrifugation. Colloid Surf B. 2018; 161:288-295. DOI:10.1016/j.colsurfb.2017.10.046.
https://doi.org/10.1016/j.colsurfb.2017.10.046
PMid:29096373
Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy – future or trend? Arthritis Res Ther. 2012; 14(4):219-229. DOI: 10.1186/ar3914.
https://doi.org/10.1186/ar3914
PMid:22894643 PMCid:PMC3580559
Dohan Ehrenfest DM, Rasmusson L. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. M.L.Т.J. 2014; 4(1):3-9.
https://doi.org/10.11138/mltj/2014.4.1.0013
Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J Cosmet Dermatol. 2018; 17(3):423-430. DOI:10.1111/jocd.12404.
https://doi.org/10.1111/jocd.12404
PMid:28887865
Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006; 118(6):147-159. DOI:1097/01.prs.0000239606.92676.cf.
https://doi.org/10.1097/01.prs.0000239606.92676.cf
PMid:17051095
Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004; 114(6):1502-1508. DOI:1097/01.prs.0000138251.07040.51.
https://doi.org/10.1097/01.PRS.0000138251.07040.51
PMid:15509939
Fortier LA, Hackett CH, Cole BJ. The effects of platelet-rich plasma on cartilage: basic science and clinical application. Oper Tech Sports Med. 2011; 19(3):154-159.
https://doi.org/10.1053/j.otsm.2011.03.004
Dahlgren LA, Mohammed HO, Nixon AJ. Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res. 2005; 23(1):84. org/10.1016/j.orthres.2004.05.007.
https://doi.org/10.1016/j.orthres.2004.05.007
PMid:15607879
Hooiveld MJ, Roosendaal G, van den Berg HM. Haemoglobin-derived iron-dependent hydroxyl radical formation in blood-induced joint damage: an in vitro study. Rheumatology. 2003; 42(6):784-90. DOI:10.1093/rheumatology/keg220.
https://doi.org/10.1093/rheumatology/keg220
PMid:12730540
Hooiveld MJ, Roosendaal G. Blood-induced joint damage: longterm effects in vitro and in vivo.Arthritis Rheum. 2003; 48(2):396-403. DOI:1002/art.10769.
https://doi.org/10.1002/art.10769
PMid:12571849
Giusti I, D’Ascenzo S, Mancò A, Di Stefano G, Di Francesco M, Rughetti A, et al. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro. BioMed Res Int. 2014; 2014:630870.
https://doi.org/10.1155/2014/630870
PMid:25147809 PMCid:PMC4132404
Giusti I,. Rughetti A, D’Ascenzo S. The effects of plateletgel-released supernatant on human fibroblasts. Wound Repair and Regeneration. 2013; 21(2):300-308. DOI:10.1111/wrr.12025.
https://doi.org/10.1111/wrr.12025
PMid:23438188
Giusti I, Rughetti A, D’Ascenzo S. Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion. 2009; 49(4):771-8. DOI: 10.1111/j.1537-2995.2008.02033.x.
https://doi.org/10.1111/j.1537-2995.2008.02033.x
PMid:19170984
Magalon J, Chateau AL. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc Med. 2016; 2(1):1-5. DOI:1136/bmjsem-2015-000060.
https://doi.org/10.1136/bmjsem-2015-000060
PMid:27900152 PMCid:PMC5117023
Mariani E, Canella V, Cattini L. Leukocyte-rich platelet-rich plasma injections do not up-modulate intra-articular pro-inflammatory cytokines in the osteoarthritic knee. PLoS One. 2016; 11(6):0156137. DOI:10.1371/journal.pone.0156137.
https://doi.org/10.1371/journal.pone.0156137
PMid:27258008 PMCid:PMC4892682
Masuki H, Okudera T, Watanebe T. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent. 2016; 2(1):19. DOI:1186/s40729-016-0052-4.
https://doi.org/10.1186/s40729-016-0052-4
PMid:27747711 PMCid:PMC5005757
Marx RE: Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001; 10:225-228.21. DOI:1097/00008505-200110000-00002.
https://doi.org/10.1097/00008505-200110000-00002
PMid:11813662
Mazzocca AD, McCarthy MB. The positive effectsof different plateletrich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med. 2012; 40(8):1742-9. DOI:10.1177/0363546512452713.
https://doi.org/10.1177/0363546512452713
PMid:22802273
Melo BAG, Luzo ÂCM. Centrifugation conditions in the L-PRP preparation affect soluble factors release and mesenchymal stem cell proliferation in fibrin nanofibers molecules. 2019; 24(15):2729. DOI:10.3390/molecules24152729.
https://doi.org/10.3390/molecules24152729
PMid:31357568 PMCid:PMC6696255
Moatshe G, Morris ER. Biological treatment of the knee with platelet-rich plasma or bone marrow aspirate concentrates. Acta Orthop. 2017; 88(6):670-674. DOI:10.1080/17453674.2017.1368899.
https://doi.org/10.1080/17453674.2017.1368899
PMid:28831830 PMCid:PMC5694813
Noh KC, Liu XN, Zhuan Z, Leukocyte-poor platelet-rich plasma-derived growth factors enhance human fibroblast proliferation in vitro. Clin Orthop Surg. 2018; 10(2):240-247. DOI:10.4055/cios.2018.10.2.240.
https://doi.org/10.4055/cios.2018.10.2.240
PMid:29854349 PMCid:PMC5964274
Rohman G, Langueh C. The Use of platelet-rich plasma to promote cell recruitment into low-molecular-weight. Polymers. 2019. DOI: 10.3390/polym11061016.
https://doi.org/10.3390/polym11061016
PMid:31181822 PMCid:PMC6631166
Paterson KL, Hunter DJ, Metcalf BR. Efficacy of intra-articular1injections of platelet-rich plasma as a symptom- and disease-modifying treatment for knee osteoarthritis – the restore trial protocol. BMC Musculoskelet Disord. 2018; 19(1):272. DOI.org/10.1186/s12891-018-2205-5.
https://doi.org/10.1186/s12891-018-2205-5
PMid:30055602 PMCid:PMC6064619
Pauly S. The effect of autologous platelet rich plasma on tenocytes of the human rotator cuff BMC Musculoskelet Disord. 2018; 19(1):422. DOI:10.1186/s12891-018-2339-5.
https://doi.org/10.1186/s12891-018-2339-5
PMid:30497435 PMCid:PMC6267832
Pochini AC, Antonioli E, Bucci DZ. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns. Einstein. 2016; 14(3):391-397. DOI:10.1590/S1679-45082016AO3548.
https://doi.org/10.1590/S1679-45082016AO3548
PMid:27759829 PMCid:PMC5234752
Taniguchi Y, Yoshioka T. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. J Exp Orthop. 2019; 4. DOI:10.1186/s40634-019-0175-7.
https://doi.org/10.1186/s40634-019-0175-7
PMid:30712144 PMCid:PMC6359998
Samson M, Fraser W, Lebowitz D. Treatments for primary immune thrombocytopenia: A Review. Cureus. 2019, 11(10):5849. DOI:10.7759/cureus.5849.
https://doi.org/10.7759/cureus.5849
PMid:31754584 PMCid:PMC6830854
Vitale C. Autoimmune Complications in сhronic lymphocytic leukemia in the era of targeted drugs cancers (Basel). 2020; 12(2):282. DOI:10.3390/cancers12020282.
https://doi.org/10.3390/cancers12020282
PMid:31979293 PMCid:PMC7072470
Wang SZ, Fan WM, Jia J. Is exclusion of leukocytes from platelet-rich plasma (PRP) a better choice for early intervertebral disc regeneration? Stem Cell Res Ther. 2018; 9(1):199. DOI:10.1186/s13287-018-0937-7.
https://doi.org/10.1186/s13287-018-0937-7
PMid:30021649 PMCid:PMC6052621
Weibrich G, Kleis WK, Kunz-Kostomanolakis M. Correlation of platelet concentration in platelet-rich plasma to the extraction method, age, sex, and platelet count of the donor. Int J Oral Maxillofac Implants. 2001; 16(5):693-9.
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018; 6. DOI: 10.1038/s41413-017-0005-4.
https://doi.org/10.1038/s41413-017-0005-4
PMid:29423331 PMCid:PMC5802812
Xu Z, Yin W, Zhang Y. Comparative evaluation of leukocyte- and platelet-rich plasma and pure platelet-rich plasma for cartilage regeneration. Sci Rep. 2017; 7:43301. DOI:10.1038/srep43301.
https://doi.org/10.1038/srep43301
PMid:28265109 PMCid:PMC5339695
Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF. Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol. 2012; 13(7):1173-84. DOI:2174/ 138920112800624445.
https://doi.org/10.2174/138920112800624445
PMid:21740374
Yin W, Xin Q, Zhang Y. Advantages of pure platelet‑rich plasma compared with leukocyte‑ and platelet‑richplasma in promoting repair of bone defects. J Transl Med. 2016; 14:73. DOI:10.1186/s12967-016-0825-9.
https://doi.org/10.1186/s12967-016-0825-9
PMid:26980293 PMCid:PMC4792107
Yin WJ, Xu HT, Sheng JG. Advantages of pure platelet-rich plasma compared with leukocyte- and platelet-rich plasma in treating rabbit knee osteoarthritis. Med Sci Monit. 2016; 22:1280-90. DOI:10.12659/msm.898218.
https://doi.org/10.12659/MSM.898218
PMid:27086145 PMCid:PMC4837928
Zhou Y, Zhang J, Wu H. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells – implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015; 6:173. DOI:10.1186/s13287-015-0172-4.
https://doi.org/10.1186/s13287-015-0172-4
PMid:26373929 PMCid:PMC4572462
Zhang L, Chen S, Chang P. Harmful effects of leukocyte-rich platelet-rich plasma on rabbit tendon stem cells in vitro. Am J Sports Med. 2016; 44(8):1941-51. DOI:10.1177/0363546516644718.
https://doi.org/10.1177/0363546516644718
PMid:27184544

Yavorovska V, Goliuk Ye, Magomedov O, Salmanova K, Saulenko K. The blood cells count in leukocyte and leukocyte-poor platelet-concentrated plasma in patients with musculoskeletal disorders. Cell Organ Transpl. 2020; 8(1):13-19. doi:10.22494/cot.v8i1.104

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.