The substantiation of adoptive transfer of tolerogenic dendritic cells for treatment of rheumatoid arthritis in mice

Home/2019, Vol. 7, No. 2/The substantiation of adoptive transfer of tolerogenic dendritic cells for treatment of rheumatoid arthritis in mice

Cell and Organ Transplantology. 2019; 7(2):125-131.
DOI: 10.22494/cot.v7i2.99

The substantiation of adoptive transfer of tolerogenic dendritic cells for treatment of rheumatoid arthritis in mice

Goltsev A., Dubrava T., Yampolska K., Lutsenko O., Gaevska Yu., Babenko N., Bondarovych M.
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

Abstract
The tolerogenic properties of dendritic cells are of particular interest in the search for new approaches to the correction of Treg immunity in the treatment of autoimmune diseases.
The purpose is to study the effect of tolerogenic dendritic cells on the Treg immunity in mice with adjuvant arthritis at different stages.
Materials and methods. Adjuvant arthritis (AA) was induced in CBA/H mice by sub-plantar administration of the Freund’s complete adjuvant. Dendritic cells were obtained ex vivo from bone marrow mononuclear cells. On the 7th, 14th or 21st days of adjuvant arthritis, animals were injected with tolerogenic dendritic cells. Their arthritis index and T-immune status (CD4+CD25+ and FOXP3+ cells) were assessed.
Results. Dysfunction of Treg immunity and clinical and diagnostic parameters in animals at different stages of adjuvant arthritis have been demonstrated. On the 14th and 21st days of adjuvant arthritis, immunotherapy by obtained ex vivo dendritic cells, contributed to the increase of CD4+CD25+ and FOXP3+ cells content in the spleen and normalization of clinical and diagnostic parameters in animals. In the acute stage of arthritis (7 days), adoptive therapy with tolerogenic dendritic cells was not effective.
Conclusion. Adoptive application of tolerogenic dendritic cells has contributed to the reduction of clinical manifestation of the arthritis. The greatest therapeutic efficacy was demonstrated by dendritic cells transferred on the 14th day of the pathology development, which contributed to the normalization of the clinical status of recipients with adjuvant arthritis.

Key words: adjuvant arthritis; adoptive immunotherapy; tolerogenic dendritic cells; Treg cells

Full Text PDF (eng) Full Text PDF (ua)

1. Chae WJ, Bothwell ALM. Therapeutic Potential of Gene Modified Regulatory T Cells: From Bench to Bedside. Front Immunol. 2018; 9:303. DOI: 10.3389/fimmu.2018.00303. eCollection 2018.
https://doi.org/10.3389/fimmu.2018.00303
PMid:29503652 PMCid:PMC5820299
2. Dastrange M, Oukka M, Bettelli E. Foxp3 interacts with nuclear factor of activated T cells and NF-B to repress cytokine gene expression and effector functions of T helper cells. PNAS. 2005; 102(14):5138-5143.
https://doi.org/10.1073/pnas.0501675102
PMid:15790681 PMCid:PMC555574
3. Han GM, O’Neil-Andersen NJ, Zurier RB, et al. CD4CD25 high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol. 2018; 253:92-101.
https://doi.org/10.1016/j.cellimm.2008.05.007
PMid:18649874 PMCid:PMC2585376
4. Endharti AT, Okuno Y, Shi Z, et al. CD8+CD122+ regulatory T cells (Tregs) and CD4+ Tregs cooperatively prevent and cure CD4+ cell-induced colitis. J Immunol. 2011; 186(1):41-52.
https://doi.org/10.4049/jimmunol.1000800
PMid:21098236
5. Bykovskaya SN, Karasev AV, Lokhonina AV, et al. Analiz T-regulyatornykh kletok CD4+CD25+FOXP3+ pri autoimmunnykh zabolevaniyakh [Analysis of T-regulatory cells CD4 + CD25 + FOXP3 + in autoimmune diseases]. Molekulyarnaya meditsina – Molecular medicine. 2013; 3:20-28. [In Russian]
6. Malysheva IE, Topchieva LV, Kurbatova IV. Ekspressiya gena FOXP3 i profil’ tsitokinov u bol’nykh revmatoidnym artritom pri lechenii metotreksatom [FOXP3 gene expression and cytokine profile in patients with rheumatoid arthritis in the treatment of methotrexate]. Immunopatologiya, allergologiya, infektologiya – Immunopathology, allergology, infectology. 2015; 2:6-10. [In Russian]
7. Nasonov EL. Farmakoterapiya revmatoidnogo artrita: rossiyskie i mezhdunarodnye rekomendatsii [Pharmacotherapy of rheumatoid arthritis: Russian and international recommendations]. Klinicheskaya farmakologiya i terapiya – Clinical Pharmacology and Therapy. 2016; 1(25):67-76. [In Russian]
8. Corsiero E, Marrelli A. An update on research advances in rheumatoid arthritis: from clinic to basic science. J Lab Precis Med. 2018; 54(3):1-9.
https://doi.org/10.21037/jlpm.2018.06.03
9. Hilkens CMU, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol. 2010; 29:156-183.
https://doi.org/10.3109/08830180903281193
PMid:20199240
10. Yang J, Yang Y, Ren Y, et al. A Mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells. PLoS ONE. 2013; 8(10):77729.
https://doi.org/10.1371/journal.pone.0077729
PMid:24204938 PMCid:PMC3812020
11. Sennikov SV, Kulikova EV, Knauer NYu, et al. Molekulyarno-kletochnye mekhanizmy, oposreduemye dendritnimi kletkami, uchastvuyushchie v induktsii tolerantnosti [Molecular cell mechanisms mediated by dendritic cells involved in the induction of tolerance]. Meditsinskaya immunologiya – Medical immunology. 2017; 19(4):359-374. [In Russian] https://doi.org/10.15789/1563-0625-2017-4-359-374
12. Goltsev AM, Dubrava TG, Yampolska KY, et al. Optymizacija metodu oderzhannja nezrilyh dendrytnyh klityn dlja terapevtychnogo zastosuvannja [The optimization of method obtaining immature dendritic cells for therapeutic use]. Fiziolohichnyi zhurnal. 2018; 64(5):33-40. [In Ukrainian]
13. Nekhaeva TL. Optimizatsiya tekhnologii i stardatizatsiya polucheniya protivoopukholevykh vaktsin na osnove autologichnykh dendritnykh kletok: dis. …kand. med. nauk [Optimization of technology and standardization of obtaining antitumor vaccines based on autologous dendritic cells]. Federal State Budgetary Institution “National Medical Research Center of Oncology named after N.N. Petrov” of the Ministry of Health of the Russian Federation. 2014. [In Russian]
14. Tsaturov ME, Talaev VYu, Matveichev AV, et al. Tolerogennye dendritnye kletki – sozrevanie i funktsii v eksperimentakh in vitro [Tolerogenic Dendritic Cells – Maturation and Functions in in vitro experiments]. Meditsinskiy al’manakh – Medical Almanac. 2010; 2(11):263-266. [In Russian]
15. Kamyshnikov S. Spravochnik po kliniko-biokhimicheskoy laboratornoy diagnostike [Handbook of clinical and biochemical laboratory diagnostics]. 2000; 2:64-66. [In Russian]
16. Oxenkrug GF, McIntyre IM, Stanley M, et al. Dexamethasone suppression test: experimental model in rats, and effect of age. BioI Psychiatry. 1984; 19:413-416.
17. Saratikov AS, Vengerovsky AI, Prishchept TP. Ad”yuvantnaya bolezn’ (morfologiya, patogenez, eksperimental’naya terapiya) [Adjuvant disease (morphology, pathogenesis, experimental therapy)]. Тоmsk, 1983. 101 p. [In Russian]
18. Donaldson LF, Seckl JR, McQuenn DS. A discrete adjuvant-induced monoarthritis in the rat: effects of adjuvant dose. J Neurosci Methods. 1993; 49:5-10.
https://doi.org/10.1016/0165-0270(93)90103-X
19. Chillingworth NL, Donaldson LF. Characterization of Freund’s complete adjuvant-induced model of chronic arthritis in mice. J Neurosci Methods. 2003; 128:45-52.
https://doi.org/10.1016/S0165-0270(03)00147-X
20. Yampolskaya EE, Kravchenko MA, Dubrava TG, et al. Regulyatsiya immunovospalitel’nogo protsessa u zhivotnykh s ad”yuvantnym artritom kriokonservirovannymi kletkami fetal’noy pecheni [Regulation of the immune-inflammatory process in animals with adjuvant arthritis by cryopreserved cells of the fetal liver]. Vestnik KhNU – Bulletin KhNU. 2012; 15(1008):177-186. [In Russian]
21. Cui Z, Liu R, Wang A, et al. Correlation between sialic acid levels in the synovial fluid and radiographic severity of knee osteoarthritis. Exp Ther Med. 2014; 8:255-259.
https://doi.org/10.3892/etm.2014.1679
PMid:24944631 PMCid:PMC4061225
22. Sakaguchi S. Regulatory T cells: history and perspective. Methods Mol Biol. 2011; 707:3-17.
https://doi.org/10.1007/978-1-61737-979-6_1
PMid:21287325
23. Faye AH Cooles, John D, Anderson AE. Treg Cells in Rheumatoid Arthritis: An Update Curr Rheumatol Rep. 2013; 15(352):2-9.
https://doi.org/10.1007/s11926-013-0352-0
PMid:23888361
24. Papagoras С, Markatseli ТЕ, Petsiou А, et al. Co-stimulation modulation improves Rheumatoid Arthritis despite reducing the proportion of CD4+CD25high T regulatory cells. Mediterr J Rheumatol. 2016; 27(1):15-19.
https://doi.org/10.31138/mjr.27.1.15
25. Monte К, Wilson C, Fei Shih F. Increased Number and Function of FoxP3 Regulatory T Cells During Experimental Arthritis. Arthritis Rheum. 2008; 58(12):3730-3741.
https://doi.org/10.1002/art.24048
PMid:19035490 PMCid:PMC4596710
26. Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol. 2005; 62:312-317.
https://doi.org/10.1111/j.1365-3083.2005.01656.x
PMid:16179019
27. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol. 2005; 175(5):3025-3032
https://doi.org/10.4049/jimmunol.175.5.3025
PMid:16116190
28. Yarilin AA, Donetskova AD. Estestvennye regulyatornye T-kletki i faktor FOXP3 [Natural regulatory T cells and FOXP3 factor]. Immunologiya – Immunology. 2006; 3:176-188. [In Russian]
29. Fontenot J, Rudensky A. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunol. 2005; 6:331-337.
https://doi.org/10.1038/ni1179
PMid:15785758
30. Lutsenko ED. Monitoring sostoyaniya pula T-regulyatornykh kletok pri ad’yuvantnom artrite posle primeneniya kriokonservirovannykh kletok platsenty [The monitoring of the state of the pool of T-regulatory cells in adjuvant arthritis after the cryopreserved placental cells use]. Lіki – lyudinі. Suchasnі problemi stvorennya, vivchennya і aprobatsії lіkars’kikh zasobіv: Materіali XXVII naukovopraktichnoї konferentsії z mіzhnarodnoyu uchastyu. Kharkiv, National University of Pharmacy. 2010:325-333. [In Russian]
31. Adler HS, Steinbrink K. Tolerogenic dendritic cells in health and disease: friend and foe! Eur J Dermatol. 2007; 17:476-491.
32. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance Nat Rev Immunol. 2007; 7:610-621.
https://doi.org/10.1038/nri2132
PMid:17627284
33. Suwandi JS, Nikolic T, Roep BO. Translating mechanism of regulatory action of tolerogenic dendritic cells to monitoring endpoints in clinical trials. Front Immunol. 2017; 8:1598.
https://doi.org/10.3389/fimmu.2017.01598
PMid:29250062 PMCid:PMC5715363
34. van Duivenvoorde LM, Han WG, Bakker AM, et al. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol. 2007; 179(3):1506-1516.
https://doi.org/10.4049/jimmunol.179.3.1506
PMid:17641016
35. Prado C, Gómez J, López P, et al. Dexamethasone upregulates FOXP3 expression without increasing regulatory activity. Immunobiology. 2011; 216:386-392.
https://doi.org/10.1016/j.imbio.2010.06.013
PMid:20667622
36. Giles AJ, Hutchinson MND, Sonnemann HM, et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer. 2018; 6(1):51.
https://doi.org/10.1186/s40425-018-0371-5
PMid:29891009 PMCid:PMC5996496
37. Hoppstädter J, Hachenthal N, Valbuena-Perez JV, et al. Induction of Glucocorticoid-induced Leucine Zipper (GILZ) Contributes to Anti-inflammatory Effects of the Natural Product Curcumin in Macrophages. J Biol Chem. 2016; 291(44):22949-22960.
https://doi.org/10.1074/jbc.M116.733253
PMid:27629417 PMCid:PMC5087716
38. Kennedy A, Schmiudt EM, Cribbs AP, et al. A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibit dysregulatrd methylation in rheumatoid arthritis T reg cells. Eur J Immunol. 2014; 44:2668-2678.
https://doi.org/10.1002/eji.201444453
PMid:25042153
39. Cribbs AP, Kennedy A, Penn H, et al. Methotrexate restores regulatory T cell function through demethelation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis Arthritis Rheum. 2015; 67:1182-1192.
https://doi.org/10.1002/art.39031
PMid:25604080
40. Figueroa FE, Carrión F, Villanueva S, et al. Mesenchymal Stem Cell treatment for autoimmune diseases: a critical review. Biol Res. 2012; 45:269-277.
https://doi.org/10.4067/S0716-97602012000300008
PMid:23283436

Goltsev A, Dubrava T, Yampolska K, Lutsenko O, Gaevska Yu, Babenko N, Bondarovych M. The substantiation of adoptive transfer of tolerogenic dendritic cells for treatment of rheumatoid arthritis in mice. Cell and Organ Transplantology. 2019; 7(2):125-131. doi:10.22494/cot.v7i2.99

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.