TGF-β1 level in platelet-rich plasma in patients with diseases and injuries of the musculoskeletal system

Home/2019, Vol. 7, No. 2/TGF-β1 level in platelet-rich plasma in patients with diseases and injuries of the musculoskeletal system

Cell and Organ Transplantology. 2019; 7(2):113-116.
DOI: 10.22494/cot.v7i2.104

TGF-β1 level in platelet-rich plasma in patients with diseases and injuries of the musculoskeletal system

Goliuk Ye.1, Yavorovska V.2, Bezdeneznykh N.3, Kozak T.3, Saulenko K.1
1The Scientific and Practice Center of Tissue and Cellular Therapy, State Institute of Traumatology and Orthopedics of the National Academy of Medical Sciences of Ukraine, Kyiv,  Ukraine
2Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv,  Ukraine
3Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract
Platelet-rich plasma (PRP) is plasma with high concentration of platelets compared with whole blood. The therapeutic effect of platelet-rich plasma is based on the effect of growth factors contained in α-granules of platelets. Transforming growth factor β1 (TGF-β1) is a growth factor of TGF-β superfamily which an amount is considerable in platelets and have the important role in musculoskeletal system regeneration.
Materials and methods. In this study using the ELISA, we determined the content of TGF-β1 in platelet-rich plasma in 14 patients with various musculoskeletal disorders, aged from 21 to 79.
Results. The level of TGF-β1 in platelet-rich plasma was found to be 194.57 ± 25.76 ng/ml, which was 30 times higher than its control content (platelet-poor plasma), where its content was 6.52 ± 3.26 ng/ml. No statistically significant difference was observed between TGF-β1 levels in platelet-rich plasma in the patients of different age and gender.
Conclusions. It has been established that platelet-rich plasma can serve as a source of TGF-β1 for therapeutic purposes. TGF-β1 content in platelet-rich plasma has been shown to be independent of gender and age and, therefore, a wide range of patients may be treated with it.

Key words: platelet-rich plasma; TGF-β1; diseases of the musculoskeletal system 

Full Text PDF (eng) Full Text PDF (ua)

1. Alsousou J, Thompson M, Hulley P. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery. J Bone Joint Surg. 2009; 91(8):987-996. DOI: 10.1302/0301-620X.91B8.22546.
https://doi.org/10.1302/0301-620X.91B8.22546
PMid:19651823
2. Alves R, Grimalt R. A review of platelet-rich plasma: History, Biology, mechanism of action, and classification. Skin Appendage Disord. 2018; 4(1):18-24. DOI: 10.1159/000477353.
https://doi.org/10.1159/000477353
PMid:29457008 PMCid:PMC5806188
3. Anitua E, Orive G. Clinical outcome of immediately loaded dental implants bioactivated with plasma rich in growth factors: a 5-year retrospective study. J Periodontol. 2008; 79(7): 1168-1176. DOI:10.1902/jop.2010.090637.
https://doi.org/10.1902/jop.2010.090637
PMid:20450361
4. Araki J, Jona M, Eto H. Optimized preparation method of platelet-concentrated plasma and noncoagulating plateletderived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue Eng Part C Methods. 2012; 18(3):176-85. DOI: 10.1089/ten.TEC.2011.0308.
https://doi.org/10.1089/ten.tec.2011.0308
PMid:21951067 PMCid:PMC3285602
5. Assirelli E, Filardo G. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surg Sports Traumatol Arthrosc. 2015; 23(9):2690-2703. DOI: 10.1007/s00167-014-3113-3.
https://doi.org/10.1007/s00167-014-3113-3
PMid:24942296 PMCid:PMC4541703
6. van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Does TGF-beta protect articular cartilage in vivo? Agents Actions Suppl. 1993; 39:27-131. DOI:10.1007/978-3-0348-7442-7_14.
https://doi.org/10.1007/978-3-0348-7442-7_14
PMid:8456624
7. Crane JL, Xian L, Cao X. Role of TGF-β signaling in coupling bone remodeling. Methods Mol Biol. 2016; 1344:287-300. DOI:10.1007/978-1-4939-2966-5_18.
https://doi.org/10.1007/978-1-4939-2966-5_18
PMid:26520132
8. Dahlgren LA, Mohammed HO, Nixon AJ. Temporal expression of growth factors and matrix molecules in healing tendon lesions. J Orthop Res. 2005; 23(1):84. https://doi.org/10.1016/j.orthres.2004.05.007.
https://doi.org/10.1016/j.orthres.2004.05.007
PMid:15607879
9. Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: An appraisal of theory and practice. Clin Exp Reprod Med. 2018; 45(2):67-74. DOI: 10.5653/cerm.2018.45.2.67.
https://doi.org/10.5653/cerm.2018.45.2.67
PMid:29984206 PMCid:PMC6030616
10. Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy – future or trend? Arthritis Res Ther. 2012; 14(4):219-229. DOI: 10.1186/ar3914.
https://doi.org/10.1186/ar3914
PMid:22894643 PMCid:PMC3580559
11. Dohan Ehrenfest DM, Rasmusson L. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009; 27(3):158-167. DOI: 10.1016/j.tibtech.2008.11.009.
https://doi.org/10.1016/j.tibtech.2008.11.009
PMid:19187989
12. Elghblawi E. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering. J Cosmet Dermatol. 2018; 17(3):423-430. DOI: 10.1111/jocd.12404.
https://doi.org/10.1111/jocd.12404
PMid:28887865
13. El-Sharkawy H, Kantarci A, Deady J. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol. 2007; 78(4):661-669. DOI: 10.1902/jop.2007.060302.
https://doi.org/10.1902/jop.2007.060302
PMid:17397313
14. Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006; 118(6):147-159. DOI: 10.1097/01.prs.0000239606.92676.cf.
https://doi.org/10.1097/01.prs.0000239606.92676.cf
PMid:17051095
15. Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg. 2004; 114(6): 1502-1508. DOI: 10.1097/01.prs.0000138251.07040.51.
https://doi.org/10.1097/01.PRS.0000138251.07040.51
PMid:15509939
16. Gumucio JP, Sugg KB, Mendias CL. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc Sport Sci Rev. 2015; 43(2):93-99. DOI: 10.1249/JES.0000000000000041.
https://doi.org/10.1249/JES.0000000000000041
PMid:25607281 PMCid:PMC4369187
17. James AW, Xu Y, Lee JK, Wang R. Differential effects of TGF-beta1 and TGF-beta 3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro. Plast Reconstr Surg. 2009; 123(1):31-43. DOI: 10.1097/PRS.0b013e3181904c19.
https://doi.org/10.1097/PRS.0b013e3181904c19
PMid:19116522 PMCid:PMC2748922
18. Klatte-Schulz F, Schmidt T, Uckert M. Comparative Analysis of Different Platelet Lysates and Platelet Rich Preparations to Stimulate Tendon Cell Biology: An In Vitro Study. Int J Mol Sci. 2018; 19(1):1-18. DOI: 10.3390/ijms19010212.
https://doi.org/10.3390/ijms19010212
PMid:29320421 PMCid:PMC5796161
19. van der Kraan PM. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Osteoarthritis and Cartilage. 2009; 17(12):1539-1545. DOI: 10.1016/j.joca.2009.06.008.
https://doi.org/10.1016/j.joca.2009.06.008
PMid:19583961
20. Magalon J, Chateau AL. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc Med. 2016; 2(1):1-5. DOI: 10.1136/bmjsem-2015-000060.
https://doi.org/10.1136/bmjsem-2015-000060
PMid:27900152 PMCid:PMC5117023
21. Perut F, Filardo G. Preparation method and growth factor content of platelet concentrate influence the osteogenic differentiation of bone marrow stromal cells. Cythotherapy. 2013; 15(7):830-839. DOI: 10.1016/j.jcyt.2013.01.220.
https://doi.org/10.1016/j.jcyt.2013.01.220
PMid:23731763
22. Poniatowski LA, Wojdasiewicz P, Gasik R. Transforming growth factor beta family: insight into the role of growth factors in regulation of fracture healing Biology and potential clinical applications. Mediators Inflamm. 2015; 2015:1-15. DOI: 10.1155/2015/137823.
https://doi.org/10.1155/2015/137823
PMid:25709154 PMCid:PMC4325469
23. Tuli R, Tuli S, Nandi S, Huang X. Transforming growth factor- -mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogenactivated protein kinase and Wnt signaling cross-talk. J Biol Chem. 2003; 278(42):41227-41236. DOI: 10.1074/jbc.M305312200.
https://doi.org/10.1074/jbc.M305312200
PMid:12893825
24. Wang W, Rigueur D, Lyons KM. TGFβ Signaling in Cartilage Development and Maintenance. Birth Defects Res C Embryo Today. 2014; 102(1):37-51. DOI: 10.1002/jbmr.3394.
https://doi.org/10.1002/jbmr.3394
PMid:29351359 PMCid:PMC6002906
25. Weibrich G, Kleis, WK, Hafner G. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002; 30(2):97-102. DOI: 10.1054/jcms.2002.0285.
https://doi.org/10.1054/jcms.2002.0285
PMid:12069512
26. Cherian JJ, Parvizi J. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee Osteoarthritis Cartilage. 2015; 23(12):2109-2118. DOI: 10.1016/j.joca.2015.06.019.
https://doi.org/10.1016/j.joca.2015.06.019
PMid:26188189
27. Lee MC, Ha CW, Elmallah RK A placebo-controlled randomised trial to assess the effect of TGF-ß1-expressing chondrocytes in patients with arthritis of the knee.Bone Joint J. 2015; 97B(7):924-932. DOI: 10.1302/0301-620X.97B7.35852.
https://doi.org/10.1302/0301-620X.97B7.35852
PMid:26130347
28. Fang D, Jin P, Huang Q. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway. J Cell Physiol. 2019; 234(9):15627-15637 DOI: 10.1002/jcp.28211
https://doi.org/10.1002/jcp.28211
PMid:30768719
29. Tang Y, Wu X, Lei W, Pang L. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009; 15(7):757-65. DOI: 10.1038/nm.1979.
https://doi.org/10.1038/nm.1979
PMid:19584867 PMCid:PMC2727637
30. Taniguchi Y, Yoshioka T. Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population l. Journal of Experimental Orthopaedics. 2019; 6:4. DOI: 10.1186/s40634-019-0175-7.
https://doi.org/10.1186/s40634-019-0175-7
PMid:30712144 PMCid:PMC6359998
31. Evanson JR, Guyton MK., Gender and age differences in growth factor concentrations from platelet-rich plasma in adults. Mil Med. 2014; 179(7):799-805. DOI: 10.7205/MILMED-D-13-00336.
https://doi.org/10.7205/MILMED-D-13-00336
PMid:25003868

Goliuk Ye, Yavorovska V, Bezdeneznykh N, Kozak T, Saulenko K. TGF-β1 level in platelet-rich plasma in patients with diseases and injuries of the musculoskeletal system. Cell and Organ Transplantology. 2019; 7(2):113-116. doi:10.22494/cot.v7i2.104

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.