Cell and Organ Transplantology. 2019; 7(1):40-46.
DOI: 10.22494/cot.v7i1.94
Immunoregulatory effect of mouse fetal neural cells on the graft-versus-host disease
Goltsev A., Babenko N., Gaevska Yu., Dubrava T.
, Lutsenko O., Bondarovych M.
Institute of Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Abstract
The problem of the treatment of acute and chronic graft-versus-host disease (GVHD), when histoincompatible bone marrow (BM) is used, remains unsolved. An important role in controlling the development of GVHD is played by Treg immunity.
The purpose of the study is to evaluate the immunoregulatory effect of native and cryopreserved murine fetal neural cells (FNCs) relative to Treg immunity of mice with GVHD.
Materials and methods. Acute GVHD was induced by the injection of histoincompatible BM to lethally irradiated mice. On the 14th day after GVHD induction and transplantation of native or cryopreserved FNCs in animals of all experimental groups, the spleen index, the content of T-regulatory FOXP3+ cells (Treg) and the number of foxp3 gene transcripts in the СD4+splenocytes were determined.
Results. The recipients of the histoincompatible BM had a decrease in the content of Treg cells and the level of foxp3 gene expression in the splenocyte population relative to the syngeneic control. Injection of native or cryopreserved FNCs to animals with GVHD caused an increase in the number of Treg cells. Cryopreserved FNCs are more than native ones enhancing both the relative number of Treg cells and the level of foxp3 gene expression in the splenocytes, which was characterized by a higher recipients’ survival up to the 16th day of observation.
Conclusion. The transplantation of fetal neural cells to recipients with GVHD stimulates the Treg immunity, which is a key to the development of immune conflict. This confirms the possibility of using fetal neural cells as a therapeutic immuno-regulatory agent.
Key words: fetal neural cells; graft-versus-host disease; Treg cells; foxp3 gene
Full Text PDF (eng) Full Text PDF (ua)1. MacDonald KP, Hill GR, Blazar BR. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood. 2017; 129(1):13-21. DOI:10.1182/blood-2016-06-686618. https://doi.org/10.1182/blood-2016-06-686618 PMid:27821504 PMCid:PMC5216261 |
||||
2. Ghimire S, Weber D, Mavin E, et al. Pathophysiology of GvHD and other HSCT-Related Major Complications. Front Immunol. 2017; 8:79. DOI:10.3389/fimmu.2017.00079 https://doi.org/10.3389/fimmu.2017.00079 PMid:28373870 PMCid:PMC5357769 |
||||
3. Antin JH. T-cell depletion in GVHD: less is more? Blood. 2011; 117(23):6061-6072. DOI:10.1182/blood-2011-04-348409. https://doi.org/10.1182/blood-2011-04-348409 PMid:21659553 |
||||
4. Michalek J, Collins RH, Durrani HP, et al. Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor beta loci sequences. Proc Natl Acad Sci U S A. 2003; 100(3):1180-1184. https://doi.org/10.1073/pnas.0337543100 PMid:12531922 PMCid:PMC298747 |
||||
5. Chang YJ, Zhao XY, Huang XJ. Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Front Immunol. 2018; 9:3041. DOI:10.3389/fimmu.2018.03041. https://doi.org/10.3389/fimmu.2018.03041 PMid:30619371 PMCid:PMC6308132 |
||||
6. Goltsev AN, Matsevitaya IYu, Lutsenko YeD, et al. On the Modification of Immunoreactivity of Myelotransplant after Cryopreservation. Probl Cryobiol Cryomed. 2010; 20(2):145-152. | ||||
7. Goltsev AN, Babenko NN, Dubrava TG, et al. Modification of the state of bone marrow hemopoietic cells after cryopreservation. Int J Refriger. 2006; 29(3):358-367. https://doi.org/10.1016/j.ijrefrig.2005.07.007 |
||||
8. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015; 168(2):140-146. DOI:10.1016/j.imlet.2015.05.004. https://doi.org/10.1016/j.imlet.2015.05.004 PMid:25982165 |
||||
9. Dunavin N, Dias A, Li M, McGuirk J. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease? Biomedicines. 2017; 5(3):39. DOI:10.3390/biomedicines5030039. https://doi.org/10.3390/biomedicines5030039 PMid:28671556 PMCid:PMC5618297 |
||||
10. Saad AG, Alyea EP, Wen PY, et al. Graft-versus-host disease of the CNS after allogeneic bone marrow transplantation. J Clin Oncol. 2009; 27(30): 147-9. DOI:10.1200/JCO.2009.21.7919. https://doi.org/10.1200/JCO.2009.21.7919 PMid:19667266 |
||||
11. Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Disease Models & Mechanisms. 2011; 4:318-333. DOI:10.1242/dmm.006668. https://doi.org/10.1242/dmm.006668 PMid:21558065 PMCid:PMC3097454 |
||||
12. Kamble RT, Chang CC, Sanchez S, Carrum G. Central nervous system graft-versus-host disease: report of two cases and literature review. Bone Marrow Transplant. 2007; 39(1):49-52. https://doi.org/10.1038/sj.bmt.1705540 PMid:17099715 |
||||
13. Xiao J, Yang R, Biswas S, et al. Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Mol Neurobiol. 2018; 55(4):3152-3171. DOI:10.1007/s12035-017-0566-7. https://doi.org/10.1007/s12035-017-0566-7 PMid:28466274 PMCid:PMC5668198 |
||||
14. Weston NM, Sun D. The potential of stem cells in treatment of traumatic brain injury. Curr Neurol Neurosci Rep. 2018; 18(1):1. DOI:10.1007/s11910-018-0812-z. https://doi.org/10.1007/s11910-018-0812-z PMid:29372464 PMCid:PMC6314040 |
||||
15. Pluchino S, Zanotti L, Brambilla E, et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One. 2009; 4(6):5959. DOI:10.1371/journal.pone.0005959. https://doi.org/10.1371/journal.pone.0005959 PMid:19543526 PMCid:PMC2694997 |
||||
16. Goltsev AN, Babenko NN, Dubrava TG, et al. Cryopreservation can regulate immunomodulatory properties of fetal neural cells. Cryobiology. 2018; 85:168. https://doi.org/10.1016/j.cryobiol.2018.10.188 https://doi.org/10.1016/j.cryobiol.2018.10.187 |
||||
17. Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011; 41:1195-1205. https://doi.org/10.1007/s00726-010-0752-7 PMid:20872026 |
||||
18. Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005; 22(5):633-642. https://doi.org/10.1016/j.immuni.2005.03.013 PMid:15894280 |
||||
19. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013; 34(3):137-143. DOI:10.1016/j.it.2012.10.001. https://doi.org/10.1016/j.it.2012.10.001 PMid:23103127 PMCid:PMC3594632 |
||||
20. Metz R, Rust S, Duhadaway JB, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology. 2012; 1:1460-1468. https://doi.org/10.4161/onci.21716 PMid:23264892 PMCid:PMC3525601 |
||||
21. Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol Med Rep. 2018; 17(4):4867-4873. https://doi.org/10.3892/mmr.2018.8537 PMid:29393500 |
||||
22. Guillemin GJ, Smith DG, Smythe GA, et al. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol. 2003; 527:105-112. https://doi.org/10.1007/978-1-4615-0135-0_12 PMid:15206722 |
||||
23. Guillemin GJ, Kerr SJ, Smythe GA, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001; 78:1-13. https://doi.org/10.1046/j.1471-4159.2001.00498.x |
||||
24. Pemberton LA, Kerr SJ, Smythe G, Brew BJ. Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res. 1997; 17:589-595. https://doi.org/10.1089/jir.1997.17.589 PMid:9355959 |
||||
25. Guillemin GJ, Smythe G, Takikawa O, Brew BJ. Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia. 2005; 49(1):15-23. https://doi.org/10.1002/glia.20090 PMid:15390107 |
||||
26. Ukena SN, Grosse J, Mischak-Weissinger E, et al. Acute but not chronic graft-versus-host disease is associated with a reduction of circulating CD4(+)CD25(high)CD127(low/-) regulatory T cells. Ann Hematol. 2011; 90(2):213-218. DOI:10.1007/s00277-010-1068-0. https://doi.org/10.1007/s00277-010-1068-0 PMid:20859740 |
||||
27. Goltsev AN, Dubrava TG, Gayevskaya YuA, et al. Foxp3 Gene Expression Value in Regulatory T Cells in Pathogenesis of Graft-Versus-Host Disease Induced with Cryopreserved Allogenic Material. Probl Cryobiol Cryomed. 2014; 24(4):322-331. https://doi.org/10.15407/cryo24.04.322 |
||||
28. Shevelev AS. Reakcija «transplantat protiv hozjaina» i transplantacionnaja bolezn’ [Graft-versus-host disease and transplant disease]. Moskva: Medicina – Moscow: Medicine, 1976. 237 p. [In Russian] | ||||
29. Gottwald E, Muller O, Polten A. Semiquantitative reverse transcription – polymerase chain reaction with the Agilent 2100 Bioanalyzer. Electrophoresis. 2001; 22(16):4016-4022. https://doi.org/10.1002/1522-2683(200110)22:18<4016::AID-ELPS4016>3.0.CO;2-9 |
||||
30. Miura Yu, Thoburn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood. 2004; 104(7):2187-2193. https://doi.org/10.1182/blood-2004-03-1040 PMid:15172973 |
||||
31. Dudakov JA, Mertelsmann AM, O’Connor MH, et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood. 2017; 130(7):933-942. https://doi.org/10.1182/blood-2017-01-762658 PMid:28607133 PMCid:PMC5561900 |
||||
32. Krenger W, Blazar BR, Holldnder GA. Thymic T-cell development in allogeneic stem cell transplantation. Blood. 2011; 117(25):6768-6776. https://doi.org/10.1182/blood-2011-02-334623 PMid:21427289 PMCid:PMC3128475 |
||||
33. Chen X, Vodanovic-Jankovic S, Johnson B, et al. Absence of T-cell control of Th1 and Th17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood. 2007; 110:3804-3813. https://doi.org/10.1182/blood-2007-05-091074 PMid:17693581 PMCid:PMC2077325 |
||||
34. Korsunsky IA, Rumyantsev AG, Bykovskaya SN. Rol’ regulyatornykh T-kletok CD4+CD25+ i mezenkhimal’nykh stvolovykh kletok kostnogo mozga v podavlenii reaktsii transplantat protiv khozyaina [The role of regulatory CD4 + CD25 + T cells and bone marrow mesenchymal stem cells in suppressing graft versus host disease]. Onkogematologiya – Oncohematology. 2008; 3:45-51. [In Russian] | ||||
35. Goltsev AN, Dubrava TG, Lutsenko ED, et al. Uroven’ ekspressii genov GATA-2 i IDO v kletkakh stvolovogo kompartmenta kriokonservirovannoy fetal’noy pecheni raznykh srokov gestatsii [Expression rate of GATA2 and IDO genes in cells of stem compartment of cryopreserved fetal liver of different gestation terms]. Tavricheskiy mediko-biologicheskiy vestnik – Scientific journal Tavricheskiy Mediko-Biologicheskiy Vestnik. 2012; 15(3):81-83. [In Russian] | ||||
36. Goltsev AN, Dubrava TG, Lutsenko ED, et al. Proyavlenie immunokorrigiruyushchego effekta kriokonservirovannykh kletok fetal’noy pecheni raznykh srokov gestatsii v usloviyakh razvitiya eksperimental’noy modeli reaktsii «transplantat protiv khozyaina» [The manifestation of the immunocorrective effect of cryopreserved fetal liver cells of different gestational periods in condition of experimental model of graft versus host disease]. Geny i kletki – Genes & Cells. 2010; 5(3):82-86. [In Russian] | ||||
37. Meijerink M, Ulluwishewa D, Anderson RC, et al. Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. J Immunol Methods. 2011; 373(1-2):136-142. https://doi.org/10.1016/j.jim.2011.08.010 PMid:21878338 |
||||
38. Goltsev AN, Porozhan IeA, Babenco NN, et al. Cryopreservation of fetal neural cells causes change of their ido gene expression. Abstract book of Annual Scientific Conference of SLTB. 2014, 8-10 October, London, UK p. 66. | ||||
39. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature reviews neuroscience. 2014; 15:300-312. https://doi.org/10.1038/nrn3722 PMid:24713688 |
||||
40. Torgerson T.R, Genin A, Chen C, et al. FOXP3 inhibits activation-induced NFAT2 expression in T cells thereby limiting effector cytokine expression. J Immunol. 2009; 183(2):907-915. DOI:10.4049/jimmunol.0800216. https://doi.org/10.4049/jimmunol.0800216 PMid:19564342 PMCid:PMC2778477 |
||||
41. Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci. 2011; 1(1):20. DOI:10.1186/2045-3701-1-20. https://doi.org/10.1186/2045-3701-1-20 PMid:21711933 PMCid:PMC3125210 |
||||
42. Cannon MJ, Ghosh D, Gujj S. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages. Vaccines (Basel). 2015; 3(2): 448-466. https://doi.org/10.3390/vaccines3020448 PMid:26343197 PMCid:PMC4494355 |
||||
43. Moll G, Alm JJ, Davies LC, et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014; 32(9):2430-2442. https://doi.org/10.1002/stem.1729 PMid:24805247 PMCid:PMC4381870 |
Goltsev A, Babenko N, Gaevska Yu, Dubrava T, Lutsenko O, Bondarovych M. Immunoregulatory effect of mouse fetal neural cells on the graft-versus-host disease. Cell and Organ Transplantology. 2019; 7(1):40-46. doi:10.22494/cot.v7i1.94
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.