The effects of interleukin-10 and fibroblasts growth factor-2 in mice with toxic cuprizone model of demyelination

Home/2019, Vol. 7, No. 1/The effects of interleukin-10 and fibroblasts growth factor-2 in mice with toxic cuprizone model of demyelination

Cell and Organ Transplantology. 2019; 7(1):in press.
DOI: 10.22494/cot.v7i1.93

The effects of interleukin-10 and fibroblasts growth factor-2 in mice with toxic cuprizone model of demyelination

Labunets I. F., Rodnichenko A. E., Utko N. A., Panteleimonova T. M., Pokholenko Ya. O., Litoshenko Z. L., Butenko G. M.
State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

Abstract
Cytokines and growth factors exhibit neurotropic, anti-inflammatory and immunomodulatory properties, and therefore can affect the functioning of the nervous system at demyelinating disorders.
Purpose. To identify changes in T-lymphocytes, macrophages, oxidative stress and antioxidant defence factors, endocrine thymus function in the brain and behaviour of mice receiving neurotoxin cuprizone and recombinant human proteins: interleukin-10 (rhIL-10) and fibroblast growth factor (rhFGF-2).
Materials and methods. 4-6-month-old 129/Sv mice received cuprizone with food every day for 3 weeks. From the 7th day of cuprizone diet, they received different doses of rhIL-10 and rhFGF-2. The content of СD3+ Т-cells, macrophages, malondialdehyde, activity of antioxidant enzymes in the brain and the level of thymulin in the blood were determined. Behavioural reactions were assessed in the “open field” test.
Results. In the brain of mice receiving cuprizone and rhIL-10, there was a decrease in the number of СD3+ Т-cells and the activity of macrophages, which significantly increased under the influence of the toxin. After cytokine injection, the activity of superoxide dismutase, catalase and glutathione peroxidase increased significantly in the brain, as well as the level of thymulin in the blood. Motor, emotional and exploratory activity of mice, significantly suppressed by the cuprizone, was increased after the introduction of rhIL-10. The effect of rhIL-10 on the test parameters is more pronounced at a dose of 5 μg/kg than 50 μg/kg. After injection of rhFGF-2 in the mice with cuprizone diet, there is a decrease in the activity of brain macrophages and an increase of the level of thymulin in the blood depending on the dose of this factor; the motor activity of these animals increased regardless of the rhFGF-2 dose.
Conclusion. The injections of rhIL-10 and rhFGF-2 provide dose-dependent positive effects on the pathogenetic factors of experimental demyelinating pathology, as well as the functional state of the nervous system. Whereas, the injections of rhIL-10 have more pronounced effects.

Key words: cuprizone; interleukin-10; fibroblasts growth factor-2; T-lymphocytes; macrophages; antioxidant enzymes; thymulin; behavioural reactions

Full Text PDF (eng) Full Text PDF (ua)

1. Huang L, Wang G. The effects of different factors on the behaviour of neural stem cells. Stem cells international. 2017. Article ID9497325. https://doi.org/10/1155/2017/9497325.
https://doi.org/10.1155/2017/9497325
PMid:29358957 PMCid:PMC5735681
2. Huang Y, Dreyfus CF. The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol. 2016; 283(ptB):531-540. DOI:10.1016/j.exp.neurol.2016.02.023
https://doi.org/10.1016/j.expneurol.2016.02.023
PMid:27016070 PMCid:PMC5010931
3. Gudi V, Gingele S, Skripuletz Th, Stangel M. Glial response during cuprizon-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci. 2014; 8 (Article 73). DOI: 10.3389/fncel.2014.00073.
https://doi.org/10.3389/fncel.2014.00073
PMid:24659953 PMCid:PMC3952085
4. Perez-Asensio FJ, Perpiñá U, Planas AM, Pozas E. Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci. 2013; 126:4208-4219. DOI: 10.1242/jcs.127803.
https://doi.org/10.1242/jcs.127803
PMid:23843621
5. Guglielmetti C, Praet J, Rangarajan J, Vreys R, DeVocht N, Maes F, et al. Multimodal imaging of subventricular zone neural stem/progenitor cells in the cuprizone mouse model reveals increased neurogenic potential for the olfactory bulb pathway, but no contribution to remyelination of the corpus callosum. Neuroimage. 2013; 1053-8119(13):000849-5. DOI:10.1016/j.neuroimage.2013.07.080.
https://doi.org/10.1016/j.neuroimage.2013.07.080
PMid:23933305
6. Labunets I, Rodnichenko A, Melnyk N, Utko N. Neuroprotective effect of melatonin in mice with toxic cuprizone model of demyelination and possible pathways of its realization. Cell and Organ Transplantology. 2018; 6(2):145-151. DOI:10.22494/cot.v6i2.87.
https://doi.org/10.22494/cot.v6i2.87
7. Pichkur LD, Verbovska SA, Vaslovich VV, Akinola ST, Deryabina OG, Pokholenko YO. Vpliv ksenogennoї transplantatsії mezenkhіmal’nikh stovburovikh klіtin ta іnterleykіnu-10 na perebіg alergіynogo entsefalomієlіtu [Effect of xenogeneic mesenchymal stem cells transplantation and interleukin-10 on the course of allergic encephalomyelitis]. Ukraїns’kiy nevrologіchniy zhurnal – Ukrainian Neurological Journal. 2018;1:56-63. [In Ukrainian]
8. Labunets IF, Melnyk NO, Rodnichenko AE, Pokholenko YO. Innovative trends in genetic and regenerative medicine. Cell and Organ Transplantology. 2017; 5(2):240-241.
9. Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immumology. 2011; 133:370-378. DOI:10.1111/j.1365-2567.2011.03450.x.
https://doi.org/10.1111/j.1365-2567.2011.03450.x
PMid:21564095 PMCid:PMC3112346
10. Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014; 9(2):92-101. DOI:10.1007/s11481-013-9501-5.
https://doi.org/10.1007/s11481-013-9501-5
PMid:24057103 PMCid:PMC4109802
11. Abdurasulova IN, Klimenko VM. Rol’ immunnykh i glial’nykh kletok v protsessakh neyrodegeneratsii [The role of immune and glial cells in the processes of neurodegeneration]. Med akadem zhurnal – Med acad journal. 2011; 11(1):12-29. [In Russian]
12. Labunets IF. Izmeneniya endokrinnoy funktsii timusa, makrofagov i T-limfotsitov golovnogo mozga u myshey raznogo vozrasta posle vvedeniya neyrotoksina kuprizona i tsitokina [Changes of thymic endocrine function, brain macrophages and T-lymphocytes in mice of different ages after administration of neurotoxin cuprizone and cytokine]. Mezhdunar nevrol zhurn – International Neurological Journal. 2018; 4(98):155-161. DOI:10.22141/2224-0713.4.98.2018.139434. [In Russian] https://doi.org/10.22141/2224-0713.4.98.2018.139434
13. Rudenko VA, Gnedkova ІО, Pichkur LD, Verbovska SA, Pokholenko YO. Vpliv ksenogennoї transplantatsії mezenkhіmal’nikh stovburovikh klіtin ta IL-10 na pokazniki klіtinnogo іmunіtetu u shchurіv z eksperimental’nim alergіchnim entsefalomієlіtom [Effect of xenogeneic mesenchymal stem cells transplantation and interleukin-10 on the parameters of cellular immunity of rats with allergic encephalomyelitis]. Zb nauk prats’ spіvrob. NMAPO іmenі PL Shupika. 2014; 23(2):434-441. [In Ukrainian]
14. Meng J, Ni J, Wu Z, Jiang M, Zhu A, Qing H, et al. The Critical Role of IL-10 in the Antineuroinflammatory and Antioxidative Effects of Rheum tanguticum on Activated Microglia Oxidative medicine and cellular longevity. 2018; 6:1-12. DOI: 10.1155/2018/1083596.
https://doi.org/10.1155/2018/1083596
PMid:29854069 PMCid:PMC5944207
15. Noda M, Takii K, Parajuli B, Kawanokuchi J, Sonobe Y, Takeuchi H, et al. FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. J Neuroinflammation. 2014. 11:76. http://www.jneuroinflammation.com/content/11/1/78.
https://doi.org/10.1186/1742-2094-11-76
PMid:24735639 PMCid:PMC4022102
16. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. J Neubiorev. 2014; 47: 485-505. doi.org/10.1016/j.neubiorev.2014.10.004.
https://doi.org/10.1016/j.neubiorev.2014.10.004
PMid:25445182
17. Labunets IF. Mozhlivostі ta perspektivi vikoristannya toksichnoї kuprizonovoї modelі demієlіnіzatsії in vivo ta in vitro v eksperimental’nіy і klіnіchnіy nevrologії (oglyad lіteraturi ta vlasnі doslіdzhennya) [Possibilities and prospects of the application of the in vivo and in vitro toxic cuprizone model for demyelination in experimental and clinical neurology (literature review and own research results)]. Ukraїns’kiy nevrologіchniy zhurnal – Ukrainian Neurological Journal. 2018; 2:63-68. DOI: https://doi.org/10.30978/UNZ2018263 [In Ukrainian] https://doi.org/10.30978/UNZ2018263
18. Csaba G. The immunoendocrine thymus as a pacemaker of lifespan. Acta Microbiol Immunol Hung. 2016; 63(2):139-158. DOI: 10.1556/030.63.2016.2.1.
https://doi.org/10.1556/030.63.2016.2.1
PMid:27352969
19. Latorre E, Matheus N, Layunta E, Alcalde AI, Mesonero JE. IL-10 counteracts proinflammatory mediator evoked oxidative stress in Caco-2 cells. Mediators of Inflammation. 2014. Article ID 982639. http://dx.doi.org/10.1155/2014/98.
https://doi.org/10.1155/2014/982639
PMid:25147442 PMCid:PMC4132333
20. Shim KY, Saima FT, Eom YW. High Dose of FGF-2 Induced Growth Retardation via ERK1/2 De-phosphorylation in Bone Marrow-derived Mesenchymal Stem Cells. Biomed Sci Letters. 2017; 23:49-56. https://doi.org/10.15616/BSL.2017.23.2.49.
https://doi.org/10.15616/BSL.2017.23.2.49
21. The Protein Protocols Handbook / Ed. J. M. Walker. Totowa, 2002. 1139 p.
22. Labunets IF, Rodnichenko AY, Vasyliev RG. Sposobnost’ kletok-predshestvennits granulotsitov i makrofagov kostnogo mozga myshey raznykh liniy k obrazovaniyu koloniy in vitro pri izmenenii soderzhaniya timulina v organizme i v kul’ture kletok [Capacity of bone marrow granylocyte and macrophage precursors in mice of different strains for in vitro colony formation under changed thymuline level in the organism and cell cultures]. Geny & kletki – Genes & Cells. 2017; 12(2):97-103. DOI: 10.23868/201707021. [In Russian] https://doi.org/10.23868/201707021
23. Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1):271-278.
https://doi.org/10.1016/0003-2697(78)90342-1
24. Labunets IF, Talanov SA, Vasilyev RG, Rodnichenko AE, Utko NA, Kuzminova IA, et al. Thymic hormones, antioxidant enzymes and neurogenesis of bulbus olfactorius in rats with parkinsonism: the effect of melatonin. Int. J. Phys. Pathophys. 2016; 7(4):285-298. DOI: 10.1615/IntJPhysPathophys.v7.i4.10.
https://doi.org/10.1615/IntJPhysPathophys.v7.i4.10
25. Amikishieva AV. Povedencheskoe fenotipirovanie: sovremennye metody i oborudovanie. [Behavioural phenotyping: modern methods and equipment]. Vestnik VOGiS – VOGiS Herald. 2009; 13(3):529-542.
26. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Found GG, et al. Interleukin-10 in the brain. Crit Rev Immunol. 2001; 21(5):427-449. DOI: 10.1615/CritRevImmunol.v21.i5.20.
https://doi.org/10.1615/CritRevImmunol.v21.i5.20
27. Klose J, Schmidt NO, Melms A, Dohi M, Miyazaki J, Bischaf F. Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells. J Neuroinflammation. 2013; 10:117. DOI: 10.1186/1742-2094-10-117.
https://doi.org/10.1186/1742-2094-10-117
PMid:24053338 PMCid:PMC3852052
28. Koldric-Zivanovic N, Tu H, Juelich TL, Rady P L, Tyring S K, Hudnall S D, et al. Regulation of adrenal glucocorticoid synthesis by interleukin-10: a preponderance of IL-10 receptor in the adrenal zone fasciculate. Brain Behave Immun. 2006; 20(5): 460-468.
https://doi.org/10.1016/j.bbi.2005.09.003
PMid:16256304
29. Haddad JJ, Hanbali LH. The anti-inflammatory and immunomodulatory activity of thymulin peptide is NF-kB dependent and involves the downregulation of I kB-α. Am J Med Biol Res. 2013; 1(2):41-49. DOI: 10.12691/ajmbr-1-2-2.
https://doi.org/10.12691/ajmbr-1-2-2
30. Kang Z, Liu L, Spangler R, Spear C, Wang C, Gulen MF, et al. IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. J Neurosci. 2012; 32(4):8284 – 8292. DOI: 10.1523/JNEUROSCI.0841-12.2012.
https://doi.org/10.1523/JNEUROSCI.0841-12.2012
PMid:22699909 PMCid:PMC3412399
31. Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, Lesueur-maluf L, Zollner R, Spadari RC, et al. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res. 2015; 287:265-275. DOI: 10.1016/j.bbr.2015.03.038.
https://doi.org/10.1016/j.bbr.2015.03.038
PMid:25843560
32. Lysyanui NI. Podvіyna rol’ mіkroglії v patogenezі rozsіyanogo sklerozu [Double role of microglyia in pathogenesis of multiple sclerosis]. Ukraїns’kiy nevrologіchniy zhurnal – Ukrainian Neurological Journal. 2018; 3-4:5-10. DOI: https://doi.org/10.30978/UNJ2018-3-5. [In Ukrainian] https://doi.org/10.30978/UNJ2018-3-5
33. Brodie C. Differential effects of Th1 and Th2 derived cytokines on NGF synthesis by mouse astrocytes. FEBS Lett. 1996; 394:117-120.
https://doi.org/10.1016/0014-5793(96)00911-8
34. Furusho M, Roulois AJ, Franklin RJ, Bansal R. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions. Glia. 2015; 63(10):1714-1728. DOI:10.1002/glia 22838.
https://doi.org/10.1002/glia.22838
PMid:25913734 PMCid:PMC4534313

Labunets I, Rodnichenko A, Utko N, Panteleimonova T, Pokholenko Ya, Litoshenko Z, Butenko G. The effects of interleukin-10 and fibroblasts growth factor 2 in mice with toxic cuprizone model of demyelination. Cell and Organ Transplantology. 2019; 7(1):25-31. doi:10.22494/cot.v7i1.93

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.