The study of the remyelinating effect of leukemia-inhibitor factor and melatonin on the toxic cuprizone model of demyelination of murine cerebellar cells culture in vitro

Home/2018, Vol. 6, No. 2/The study of the remyelinating effect of leukemia-inhibitor factor and melatonin on the toxic cuprizone model of demyelination of murine cerebellar cells culture in vitro

Cell and Organ Transplantology. 2018; 6(2):182-187.
DOI: 10.22494/cot.v6i2.90

The study of the remyelinating effect of leukemia inhibitory factor and melatonin on the toxic cuprizone model of demyelination of murine cerebellar cells culture in vitro

Rodnichenko A. E., Labunets I. F.
State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

Abstract
The cuprizone model of toxic demyelination in vitro is widely used to study de- and remyelination in the CNS, as well as to address the issues of finding potential compounds that affect myelination of neuron axons.
The aim of the study was to investigate the role of recombinant human leukemia inhibitory factor (rhLIF) and melatonin in remyelination, using the cuprizone demyelination model in vitro.
Methods. To study the features of the demyelination and remyelination processes of neuronal axons, the culture of dissociated cerebellar cell culture of the 7-day-old FVB/N lineage mice was used. To detect the myelin sheaths, a histochemical staining with a Sudan Black B was used. To identify oligodendrocytes, immunocytochemical staining of 28-30-day old cerebellar cells cultures for oligodendrocytes marker Olig2 was performed.
Results. The direct effect of the demyelinating factor of cuprizone and remyelination agents (rhLIF and melatonin) on oligodendrocytes in vitro was confirmed. The remyelinating effect of LIF and melatonin on the restoration of myelination processes in dissociated cerebellar cell culture using histochemical and immunocytochemical staining has been revealed.
Conclusions. Cuprizone-induced demyelination in vitro is associated with the death of Olig2+ oligodendrocytes and loss of myelin formation. rhLIF and melatonin prevented the loss of oligodendrocytes and, consequently, reduced the destruction of myelin membranes.

Key words: cerebellum; cuprizone; demyelination; remyelination; rhLIF; melatonin

Full Text PDF (eng) Full Text PDF (ua)

1. Melnik NO. Struktura deyakikh organіv nervovoї ta іmunnoї sistem za umov demієlіnіzatsії ta remієlіnіzatsії [The structure of some organs of the nervous and immune systems in condition of demyelination and remyelination]. Medical Doctorate Thesis. Кyiv, 2005. 358 p. [In Ukrainian]
 2. Pivneva TA. Mekhanizmy demielinizatsii pri rasseyannom skleroze. [Mechanisms of demyelination in multiple sclerosis]. Neyrofiziologiya – Neurophysiology. 2009. 41(5):429-437. [In Russian]
3. Suslina ZA, Zavalishin IA. Rasseyannyy skleroz: ot predstavleniy o patogeneze k lecheniyu [Multiple sclerosis: from pathogenesis concepts to treatment]. Nevrologicheskiy vesnik – Neurological journal. 2010; 1:6-8. [In Russian]
4. Mishchenko TS, Shulga OD. Bobryk NV, et al. Rozsiyanyy skleroz: hlobal’ni perspektyvy [Multiple sclerosis: the global perspective]. Ukrainskiy medichniy chasopis – Ukrainian medical journal. 2014; 101(3):84-87. [In Ukrainian]
5. Abakumova TO, Kuzkin AA, Zharova MV, et al. Kuprizonovaya model’ kak instrument dlya doklinicheskogo issledovaniya effektivnosti diagnostiki i terapii rasseyannogo skleroza [Cuprizone model as a tool for preclinical studies of the effectiveness of multiple sclerosis diagnosis and therapy]. Byull eksperim biologii i med – Bulletin of Experimental Biology and Medicine. 2015; 159(1):124-129. [In Russian]
6. Praet J, Guglielmetti C, Berneman Z, et al. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 2014; 47:485-505.
https://doi.org/10.1016/j.neubiorev.2014.10.004
PMid:25445182
7. Acs P, Kalman B. Pathogenesis of multiple sclerosis: what can we learn from the cuprizone model. Methods Mol Biol. 2012; 900:403-431.
https://doi.org/10.1007/978-1-60761-720-4_20
PMid:22933081
8. Kipp M, Clarner T, Dang J, et al. The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009; 118(6):723-736.
https://doi.org/10.1007/s00401-009-0591-3
PMid:19763593
9. Labunets IF. Struktura deyakikh organіv nervovoї ta іmunnoї sistem za umov demієlіnіzatsії ta remієlіnіzatsії [Possibilities and prospects of the application of the in vivo and in vitro toxic cuprizone model for demyelination in experimental and clinical neurology (literature review and own research results)]. Ukraїns’kiy nevrologіchniy zhurnal – Ukrainian Neurological Journal. 2018; 2:63-68. [In Ukrainian]
10. Andrew JA, Zhang H, Bauer N, et al. In vitro modeling of central nervous system myelination and remyelination. In: Glia. 2012; 60(1):1-12.
https://doi.org/10.1002/glia.21231
PMid:21858876
11. Zhang H, Jarjour AA, Boyd A, et al. Central nervous system remyelination in culture — A tool for multiple sclerosis research. Experimental Neurology. 2011; 230:138-148 DOI:10.1016/j.expneurol.2011.04.009.
https://doi.org/10.1016/j.expneurol.2011.04.009
12. Rymar SYu, Novikova SM, Irodov DM, et al. Perspektivi vikoristannya u meditsinі faktora іngіbuvannya leykemії ta stvorennya yogo produtsenta [Prospects for the use in medicine of the Leukemia inhibitory factor and the creation of its producer]. Zhurn. AMN Ukraїni – Journal AMS of Ukraine. 2010; 16(2):199-212. [In Ukrainian]
13. Deverman B, Patterson Р. Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. J Neurosci. 2012; 32(6):2100-2109.
https://doi.org/10.1523/JNEUROSCI.3803-11.2012
PMid:22323722 PMCid:PMC3561904
14. Schmitz T, Chew L. Cytokines and myelination in the central nervous system. Scientific World Journal. 2008; 2(8):1119-1147.
https://doi.org/10.1100/tsw.2008.140
PMid:18979053 PMCid:PMC2663591
15. Gudi V, Gingele S, Skripuletz Th, et al. Glial response during cuprizon-induced de- and remyelination in the CNS: lessons learned. Frontiers in cellular neuroscience. 2014; 8(73):24.
16. Majumder A, Banerjee S, Harrill JA, et al. Neurotrophic effects of leukemia inhibitory factor on neural cells derived from human embryonic stem cells. Stem Cells. 2012; 30(11):2387-2399.
https://doi.org/10.1002/stem.1201
PMid:22899336
17. Marriott MP, Emery B, Cate HS, et al. Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia. 2008; 56:686-698.
https://doi.org/10.1002/glia.20646
PMid:18293407
18. Labunets LF, Melnyk NJ, Rodnichenko AE, et al. Cuprizone-induced disorders of central nervous system neurons, behavioral reactions, brain activity of macrophages and antioxidant enzymes in mice of different ages: Role of Leukemia Inhibitory Factor in their improvement. JAging Geriatr Med. 2017; 1:1-8. DOI: 10.4172/AGM.1000104.
19. Zozulya Yu. A., Lisyany N. I. Neyrogennaya differentsirovka stvolovykh kletok [Neurogenic differentiation of stem cells]. Kiev, OOO UIPK «EksOb», 2005. 368 p. [In Russian]
20. Karaaslan С, Suzen S. Antioxidant properties of melatonin and its potential action in diseases. Current topics in medicinal chemistry. 2015; 15(9):894-903.
https://doi.org/10.2174/1568026615666150220120946
PMid:25697560
21. Reiter RJ, Manchestr LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. CurrNeuropharmacol. 2010; 8(3):194-210.
https://doi.org/10.2174/157015910792246236
22. Tomas-Zapico CA, Coto-Montes A. A proposed mechanisms to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005; 39(2):99-104.
https://doi.org/10.1111/j.1600-079X.2005.00248.x
PMid:16098085
23. Kashani IR, Rajabi Z, Akbari M, et al. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res. 2014; 232(9):2835-2846.
https://doi.org/10.1007/s00221-014-3946-5
PMid:24798398
24. Moriya T, Horie N, Mitome M, et al. Melatonin influences the proliferative and differentiative activity of neural stem cells. J Pineal Res. 2007; 42(4):411-418.
https://doi.org/10.1111/j.1600-079X.2007.00435.x
PMid:17439558
25. Srinivasan V. Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord. 2011; 4(5):297-317.
https://doi.org/10.1177/1756285611406166
PMid:22010042 PMCid:PMC3187674
26. Talanov SA, Sagach VF. Antioksidanti prignіchuyut’ rozvitok eksperimental’nogo gemіparkіnsonіzmu u shchurіv [Antioxidants inhibit the development of experimental hemiparkinsonism in rats]. Fіzіologichnyi zhurnal. 2008; 54(4):23-29. [In Ukrainian]
27. Gutierrer-Valdez AL, Anaya-Martinez V, Ordonez-Librado JL, et al. Effect of chronic L-Dopa or melatonin treatments after dopamine deafferentation in rats: dyskinesia, motor performance, and cytological analysis. ISRN Neurology. 2012; 2012:1-16.
https://doi.org/10.5402/2012/360379
PMid:22462019 PMCid:PMC3302121
28. Rodnichenko A. Implementation of a toxic cuprizone model of demyelination in vitro. Cell and Organ Transplantology. 2018; 6(1):93-98.
https://doi.org/10.22494/cot.v6i1.84
29. Layton MJ, Lock P, Metcaff D, et al. Cross-species receptor binding characteristics of human and mouse leukemia inhibitory factor suggest a complex binding interaction. J Biol Chem. 1994. 269(25):17048-17055.
PMid:8006010
30. Rodnichenko A, Utko N, Labunets I, et al. In vitro cuprizone model as a tool to study remyelination factors. 11th FENS Forum of neuroscience (7-11 July 2018, Berlin, Germany), Abstract number F18-0774.
31. Abdurasulova IN, Klimenko VM. Rol’ immunnykh i glial’nykh kletok v protsessakh neyrodegeneratsii [The role of immune and glial cells in the processes of neurodegeneration]. 2011; 11(1):12-29. [In Russian]
32. Goldman SA, Kuypers NJ. How to make an oligodendrocyte. Development. 2015; 142:3983-3995.
https://doi.org/10.1242/dev.126409
PMid:26628089 PMCid:PMC4712837
33. Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Letters. 2011; 585:3730-3737.
https://doi.org/10.1016/j.febslet.2011.04.037
PMid:21539842 PMCid:PMC3158966

Rodnichenko A., Labunets I. The study of the remyelinating effect of leukemia inhibitory factor and melatonin on the toxic cuprizone model of demyelination of murine cerebellar cells culture in vitro. Cell and Organ Transplantology. 2018; 6(2):182-187. doi:10.22494/cot.v6i2.90

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.