The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo

Home/2018, Vol. 6, No. 1/The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo

Cell and Organ Transplantology. 2018; 6(1):80-85.
DOI: 10.22494/COT.V6I1.83

The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo

Kalmukova O. O., Dzerzhinsky M. E.
Educational and Scientific Centre “Institute of Biology”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Abstract
Recently, numerous studies have indicated that melatonin, the hormone of pineal gland, affects the processes of differentiation of many cells, including preadipocytes into brown, beige and white adipocytes. Therefore, it is important to study the possibilities of using melatonin as a factor for the differentiation of preadipocytes to control the adipose tissue functional activity in the treatment of various diseases, including obesity.
The aim of the study was to evaluate the morphology and functional status of brown adipose tissue at the different time of melatonin administration.
Materials and methods. Outbred rats were divided into 3 experimental groups: control, administration of melatonin 1 hour after light-on ZT01 (Zeitgeber time), administration of melatonin 1 hour before light-off ZT11. Melatonin was administered by gavage daily for 7 weeks at a standard exposure day-night light (12:12).
Results. The application of melatonin affects the morphology and functional state of brown adipocytes independently of the administration time: the nuclear-cytoplasmic ratio increases due to an increase in the area of the nucleus against the unchanging cell area. The number of lipid drops increases in each adipocyte, but their size are decreased. The effect of different time of melatonin administration was manifested in the increase brown adipose tissue weight, in the terms of evening administrations.
Conclusion. The effects of different times of melatonin administration at the cytological level are manifested almost identical in the brown adipocytes functional state in all experimental groups. However, at the organism level in terms of evening administrations, an increase in the relative mass of brown adipose tissue is observed, but the size of brown adipocytes do not change, which may indicate the activation of the differentiation of brown adipocytes from the progenitor cells.

Key words:  brown adipocytes; cell differentiation; melatonin; chronobiology

Full Text PDF (eng) Full Text PDF (ua)

1. Hardeland R, Cardinali D, Srinivasan V, et al. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011; 93(3):350-384.
https://doi.org/10.1016/j.pneurobio.2010.12.004
PMid:21193011
2. Pfeffer M, Korf H, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms Gen Comp Endocrin. 2017; 258:215-221.
3. Reina M, Martínez A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput Theoret Chem. 2018; 1123:111-118.
https://doi.org/10.1016/j.comptc.2017.11.017
4. Acu-a-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014; 71(16):2997-3025.
https://doi.org/10.1007/s00018-014-1579-2
PMid:24554058
5. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother. 2006; 60(3):97-108.
https://doi.org/10.1016/j.biopha.2006.01.002
PMid:16527442
6. Slominski RM, Reiter R, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012; 351(2):152-166.
https://doi.org/10.1016/j.mce.2012.01.004
PMid:22245784 PMCid:PMC3288509
7. Tosini G, Owino S, Guillame J-L, et al. Melatonin receptors: latest insights from mouse models. BioEssays. 2014; 36(8):778-787.
https://doi.org/10.1002/bies.201400017
PMid:24903552 PMCid:PMC4151498
8. Liu J, Clough SJ. Hutchinson AJ, et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016; 56:361-383.
https://doi.org/10.1146/annurev-pharmtox-010814-124742
PMid:26514204 PMCid:PMC5091650
9. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, et al. Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem. 1994; 269:28531-28534.
PMid:7961794
10. Pandi-Perumal S, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008; 85:335-353.
https://doi.org/10.1016/j.pneurobio.2008.04.001
PMid:18571301
11. Niles LP, Armstrong KJ, Castro LM, et al. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT 1 receptor with neuronal and glial markers. BMC neurosci. 2004; 5(1):41.
https://doi.org/10.1186/1471-2202-5-41
PMid:15511288 PMCid:PMC529253
12. Kong X, Li X, Cai Z, et al. Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol. 2008; 28(4):569-579.
https://doi.org/10.1007/s10571-007-9212-7
PMid:17912627
13. Sotthibundhu A, Phansuwan‐Pujito P, Govitrapong P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res. 2010; 49(3):291-300.
https://doi.org/10.1111/j.1600-079X.2010.00794.x
PMid:20663047
14. Fu J, Zhao S, Liu H, et al. Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J Pineal Res. 2011; 51(1):104-112.
https://doi.org/10.1111/j.1600-079X.2011.00867.x
PMid:21392094
15. Shuai Y, Liao L, Su X, et al. Melatonin Treatment Improves Mesenchymal Stem Cells Therapy by Preserving Stemness during Long-term In Vitro Expansion. Theranostics. 2016; 6(11):1899-1917.
https://doi.org/10.7150/thno.15412
PMid:27570559 PMCid:PMC4997245
16. Mias C, Trouche E, Seguelas M, et al. Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem cells. 2008; 26(7):1749-1757.
https://doi.org/10.1634/stemcells.2007-1000
PMid:18467662
17. Zaminy A, Ragerdi Kashani I, Barbarestani M, et al. Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Iranian Biomed J. 2008; 12(3):133-141.
PMid:18762816
18. Lee S, Jung Y, Oh S, et al. Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Gαq in skin wound healing. J Pineal Res. 2014; 57(4):393-407.
https://doi.org/10.1111/jpi.12179
PMid:25250716
19. Wu H, Song C, Zhang J, et al. Melatonin-mediated upregulation of GLUT1 blocks exit from pluripotency by increasing the uptake of oxidized vitamin C in mouse embryonic stem cells. FASEB J. 2017; 31(4):1731-1743.
https://doi.org/10.1096/fj.201601085R
PMid:28069827
20. Shu T, Fan L, Wu T, et al. Melatonin promotes neuroprotection of induced pluripotent stem cells-derived neural stem cells subjected to H2O2-induced injury in vitro. Eur J Pharmacol. 2018; 825:143-150.
https://doi.org/10.1016/j.ejphar.2018.02.027
PMid:29462594
21. Cho YA, Noh K, Jue SS, et al. Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis. J Pineal Res. 2015; 58(1):127-135.
https://doi.org/10.1111/jpi.12198
PMid:25431168
22. Majidinia M, Reiter RJ, Shakouri SK, et al. The multiple functions of melatonin in regenerative medicine. Ageing Res Rev. 2018. Available from: https://doi.org/10.1016/j.arr.2018.04.003.
https://doi.org/10.1016/j.arr.2018.04.003
23. Luchetti F, Canonico B, Bartolini D, et al. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res. 2014; 56(4):382-397.
https://doi.org/10.1111/jpi.12133
PMid:24650016
24. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007; 293(2):E444-E452.
https://doi.org/10.1152/ajpendo.00691.2006
PMid:17473055
25. Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009; 58(7):1526-1531.
https://doi.org/10.2337/db09-0530
PMid:19401428 PMCid:PMC2699872
26. Townsend K, Tseng YH. Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte. 2012; 1(1):13-24.
https://doi.org/10.4161/adip.18951
PMid:23700507 PMCid:PMC3661118
27. Roman S, Agil A, Peran M, et al. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl Res. 2015; 165(4):464-479.
https://doi.org/10.1016/j.trsl.2014.11.002
PMid:25433289
28. Wang Q, Zhang M, Ning G, et al. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PloS one. 2011; 6(6):21006.
https://doi.org/10.1371/journal.pone.0021006
PMid:21701596 PMCid:PMC3118816
29. Vosselman MJ, Van der Lans AA, Brans B, et al. Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes. 2012; 61(12):3106-3113.
https://doi.org/10.2337/db12-0288
PMid:22872233 PMCid:PMC3501890
30. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481(7382):463-468.
https://doi.org/10.1038/nature10777
PMid:22237023 PMCid:PMC3522098
31. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013; 98(4):E769-E778.
https://doi.org/10.1210/jc.2012-2749
PMid:23436919
32. Bartness TJ, Demas GE, Song CK. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp Biol Med. 2002; 227(6):363-376.
https://doi.org/10.1177/153537020222700601
33. Brydon L, Petit L, Delagrange P, et al. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology. 2001; 142(10):4264-4271.
https://doi.org/10.1210/endo.142.10.8423
PMid:11564683
34. Alonso-Vale MI, Anhê GF, das Neves Borges-Silva C, et al. Pinealectomy alters adipose tissue adaptability to fasting in rats. Metabolism. 2004; 53(4):500-506.
https://doi.org/10.1016/j.metabol.2003.11.009
PMid:15045699
35. Elabd C, Chiellini C, Carmona M, et al. Human Multipotent Adipose-Derived Stem Cells Differentiate into Functional Brown Adipocytes. Stem cells. 2009; 27(11):2753-2760.
https://doi.org/10.1002/stem.200
PMid:19697348
36. Ahfeldt T, Schinzel RT, Lee YK, et al. Programming human pluripotent stem cells into white and brown adipocytes. Nature cell biology. 2012; 14(2):209-219.
https://doi.org/10.1038/ncb2411
PMid:22246346 PMCid:PMC3385947
37. Nishio M, Yoneshiro T, Nakahara M, et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell metabolism. 2012; 16(3):394-406.
https://doi.org/10.1016/j.cmet.2012.08.001
PMid:22958922
38. Tan DX, Manchester LC, Fuentes‐Broto L, et al. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev. 2011; 12(3):167-188.
https://doi.org/10.1111/j.1467-789X.2010.00756.x
PMid:20557470
39. Rieck B, Schlaak S. In vivo tracking of rat preadipocytes after autologous transplantation. Ann Plast Surg. 2003; 51(3):294-300.
https://doi.org/10.1097/01.SAP.0000063758.16488.A9
PMid:12966243
40. Tseng YH, Kokkotou E, Schulz TJ, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008; 454(7207):1000-1004.
https://doi.org/10.1038/nature07221
PMid:18719589 PMCid:PMC2745972
41. Tanzi MC, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices. 2009; 6(5):533-551.
https://doi.org/10.1586/erd.09.37
PMid:19751125
42. Itoi Y, Takatori M, Hyakusoku H, et al. Comparison of readily available scaffolds for adipose tissue engineering using adipose-derived stem cells. JPRAS. 2010; 63(5):858-864.
https://doi.org/10.1016/j.bjps.2009.01.069
43. Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology. 2010; 278(1):55-67.
https://doi.org/10.1016/j.tox.2010.04.008
PMid:20417677
44. Reiter RJ, Tan DX, Herman TS, et al. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys. 2004; 59(3):639-653.
https://doi.org/10.1016/j.ijrobp.2004.02.006
PMid:15183467
45. Le Gouic S, Atgié C, Viguerie-Bascands N, et al. Characterization of a melatonin binding site in Siberian hamster brown adipose tissue. Eur J Pharmacol. 1997; 339(2-3):271-278.
https://doi.org/10.1016/S0014-2999(97)01373-3
46. Prunet-Marcassus B, Ambid L, Viguerie‐Bascands N, et al. Evidence for a direct effect of melatonin on mitochondrial genome expression of Siberian hamster brown adipocytes. J Pineal Res. 2001; 30(2):108-115.
https://doi.org/10.1034/j.1600-079X.2001.300206.x
PMid:11270477
47. Kato H, Tanaka G, Masuda S, et al. Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. J Pineal Res. 2015; 59(2):267-275.
https://doi.org/10.1111/jpi.12259
PMid:26123001
48. Rhee YH, Ahn JC. Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells. J Physiol Biochem. 2016; 72(2):145-155.
https://doi.org/10.1007/s13105-015-0463-3
PMid:26797706
49. Zhang L, Su P, Xu C, et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. J Pineal Res. 2010; 49(4):364-372.
https://doi.org/10.1111/j.1600-079X.2010.00803.x
PMid:20738756
50. Alonso-Vale M. IC, Peres SB, Vernochet C, et al. Adipocyte differentiation is inhibited by melatonin through the regulation of C/EBPβ transcriptional activity. J Pineal Res. 2009; 47(3):221-227.
https://doi.org/10.1111/j.1600-079X.2009.00705.x
PMid:19663997
51. Laitinen JT, Castren E, Vakkuri O, et al. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus. Endocrinology. 1989; 124(3):1585-1587.
https://doi.org/10.1210/endo-124-3-1585
PMid:2917527
52. Acu-a-Castroviejo D, Reiter RJ, Menendez‐Pelaez A, et al. Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J Pineal Res. 1994; 16(2):100-112.
https://doi.org/10.1111/j.1600-079X.1994.tb00089.x
53. Dallmann R, Brown SA, Gachon F. Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol. 2014; 54:339-361.
https://doi.org/10.1146/annurev-pharmtox-011613-135923
PMid:24160700 PMCid:PMC3885389
54. McKenna H, van der Horst GT, Reiss I, et al. Clinical chronobiology: a timely consideration in critical care medicine. Crit Care. 2018; 22(1):124.
https://doi.org/10.1186/s13054-018-2041-x
PMid:29747699 PMCid:PMC5946479
55. Dyar KA, Eckel-Mahan KL. Circadian Metabolomics in Time and Space. Front Neurosci. 2017; 11:369.
https://doi.org/10.3389/fnins.2017.00369
PMid:28744188 PMCid:PMC5504240
56. Yang F, Zhang L, Zhu W. Adaptive thermogenesis of brown adipose tissue in tree shrews (Tupaia belangeri): Role of melatonin. J Zool Biosci Res. 2017; 1(4):1-7.
57. Gao AW, Houtkooper RH. Mitochondrial fission: firing up mitochondria in brown adipose. EMBO J. 2014; 33(5):401-402.
https://doi.org/10.1002/embj.201487798
PMid:24480477 PMCid:PMC3989620
58. Contreras C, Nogueiras R, Diéguez C, et al. Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol. 2016; 438:107-115.
https://doi.org/10.1016/j.mce.2016.08.002
PMid:27498420

Kalmukova O, Dzerzhinsky M. The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo. Cell and Organ Transplantology. 2018; 6(1):80-85. doi:10.22494/cot.v6i1.83

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.