The effects of different doses of thymulin in vivo and in vitro on some biological properties of bone marrow-derived multipotent mesenchymal stromal cells in mice of different strains

Home/2018, Vol. 6, No. 1/The effects of different doses of thymulin in vivo and in vitro on some biological properties of bone marrow-derived multipotent mesenchymal stromal cells in mice of different strains

Cell and Organ Transplantology. 2018; 6(1):66-73.
DOI: 10.22494/COT.V6I1.82

The effects of different doses of thymulin in vivo and in vitro on some biological properties of bone marrow-derived multipotent mesenchymal stromal cells in mice of different strains

Labunets I. F., Rodnichenko A. E.
State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

Abstract
A promising source for cell therapy are multipotent mesenchymal stromal cells (MMSC), whose biological properties can change at immune dysfunction of central genesis.
The purpose of the study is to investigate the ability of murine bone marrow-derived MMSC to colony formation, directed differentiation and immunosuppressive effect at different content of serum thymic factor (thymulin) in the body and in the cell culture in mice of different strains.
Materials and methods. MMSCs cultures were obtained from the bone marrow of FVB/N and 129/Sv mice. We performed the study of clonogenic ability of MMSCs, phenotyping, assessment of the osteogenic and adipogenic potential, estimation of immunomodulating properties of MMSCs after thymectomy or addition of the thymulin in the culture in vitro.
Results. It was found that the level of thymulin in the control mice of the FVB/N strain is higher than in 129/Sv mice. The ability of bone marrow progenitor cells to colony formation in control and thymectomized mice depends on their genotype. When adding thymulin at concentrations of 1 ng/mL and 10 ng/mL to the bone marrow cells culture of both strains thymectomized mice, the change in the number of colony-forming unit fibroblasts was observed only with the addition of a high dose of the hormone. Thymectomy in FVB/N mice leads to an increase in the differentiation of MMSCs in the osteogenic direction and to a decrease in adipogenic differentiation, which is restored after adding thymulin to the cell culture. In thymectomized 129/Sv mice, there was a decrease in osteogenic differentiation and recovery after incubation of cells with thymulin. The immunosuppressive effect of bone marrow MMSCs was established in mice of both strains. In this case, strain-dependent differences in this effect are manifested in the degree of immunosuppression.
Conclusion. The ability of bone marrow MMSC of the FVB/N and 129/Sv mice to colony formation, directed differentiation and immunosuppressive effect at different content of thymulin in the body or in cell culture is related with the thymus function and changes after thymectomy.
The response of the bone marrow MMSCs to the thymectomy depends on the genotype of the mice. It has been shown that thymulin has a recover effect on the reduced clonogenic and osteogenic potential of the bone marrow-derived MMSCs in mice of both strains and the adipogenic potential in 129/Sv mice.

Key words:  bone marrow MMSCs; thymectomy; serum thymic factor; thymulin

Full Text PDF (eng) Full Text PDF (ru)

1. Lotfinegar P, Shamsasenjian K, Movassaghpour A, et al. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull. 2014; 4(1):5-13.
2. Kuroda Y, Kitada M, Wakao S, et al. Bone marrow mesenchymal cells: how do they contribute to tissue repair and they really stem cells? Arch Immunol Ther Exp. 2011; 59:369-378.
https://doi.org/10.1007/s00005-011-0139-9
PMid:21789625
3. Orlic D, Kajstura J, Cimenti S. Bone marrow cells regenerate infarcted myocardium. Nature. 2011; 410:701-705.
https://doi.org/10.1038/35070587
PMid:11287958
4. Sekiya I, Larson BL, Vuoristo JT, et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004; 2:256-264.
https://doi.org/10.1359/JBMR.0301220
5. Bommie F, Sung-No J. The Immunomodulatory Effects of Mesenchymal Stem Cells in Prevention or Treatment of Excessive Scars. Stem Cells International. 2016. 8 p. Available from: https://dx.doi.org/10.1155/2016/6937976.
6. Tyndall A, Uccelli A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplant. 2009; 43(11):821-828.
https://doi.org/10.1038/bmt.2009.63
PMid:19308035
7. Deshpande S, James AW, Blougha J, et al. Reconciling the effects of inflammatory cytokines on mesenchymal cell osteogenic differentiation. J Surg Res. 2013; 185(1):278-285. DOI:10.1016/j.jss.2013.06.063.
https://doi.org/10.1016/j.jss.2013.06.063
8. Lee EJ, Bajracharya P, Jang EJ, et al. Effect of sex steroid hormones on bovine myogenic satellite cell proliferation, differentiation and lipid accumulation in myotube. Asian-Aust J Anim Sci. 2010; 23(5):649-658.
https://doi.org/10.5713/ajas.2010.90227
9. Reggiani PC, Schwerdt JI, Console GM, et al. Physiology and therapeutic potential of the thymic peptide thymulin. Curr Pharm Des. 2014; 20(29):4690-4696.
https://doi.org/10.2174/1381612820666140130211157
PMid:24588820
10. Labunets IF, Rodnichenko АYe, Vasyliev RG. Sposobnost’ kletok-predshestvennits granulotsitov i makrofagov kostnogo mozga myshey raznykh liniy k obrazovaniyu koloniy in vitro pri izmenenii soderzhaniya timulina v organizme i v kul’ture kletok [Capacity of bone marrow granylocyte and macrophage precursors in mice of different strains for in vitro colony formation under changed thymulin level in the organism and cell cultures]. Genes&Cells. 2017; 12(2):97-103. DOI: 10.23868/201707021. [In Russian] https://doi.org/10.23868/201707021
11. Labunets IF, Rodnichenko АYe. Vliyanie melatonina i timulina na biologicheskie svoystva mul’tipotentnykh mezenkhimal’nykh stromal’nykh kletok i gemopoeticheskikh stvolovykh kletok kostnogo mozga myshey raznykh liniy [The influence of melatonin and thymulin on the biological properties of multipotent mesenchymal stromal cells and bone marrow hematopoietic stem cells of mice different strains]. Klіtinna ta organna transplantologіya. – Cell and Organ Transplantology. 2017; 5(2):242. [In Russian]
12. Labunets IF. Epifiz i ritmy funktsiy immunnoy sistemy pri starenii. Eksperimental’noe issledovanie [Epiphysis and rhythms of immune system functions during aging. Experimental study]. Saarbrucken: LAP LAMBERT Academic Publishing, 2012. 133 p. [In Russian]
13. Di Rosa F. T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow. Cell Biol. 2009; 87(1):20-29.
https://doi.org/10.1038/icb.2008.84
14. Ustymenko AM. Vpliv postnatal’noї timektomії u mishey lіnії CBA/Ca na klіtini-poperedniki kіstkovogo mozku і formuvannya kіstki v zrіlomu vіtsі [Influence of postnatal thymectomy in CBA/Ca mice on bone marrow precursor cells and bone formation in adulthood: avtoref. dissert. … Candidate of Biological Sciences]. Kyiv, 2006. 16 p. [In Ukrainian]
15. Anisimov VN. Molekulyarnye i fiziologicheskie mekhanizmy stareniya [Molecular and physiological mechanisms of aging]. Sankt-Peterburg: Nauka – Saint-Petersburg: Science, 2008. 434 p. [In Russian]
16. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004; 103:1662-1668.
https://doi.org/10.1182/blood-2003-09-3070
PMid:14592819
17. Labunets IF, Kuchuk ОV, Rodnichenko АE, et al. Geneticheskie osobennosti funktsional’nogo sostoyaniya immunnoy sistemy u intaktnykh myshey i v usloviyakh stressovykh vliyaniy [Genetic features of the functional state of the immune system in intact mice and under stressful influences]. Aktual’nye problemy akusherstva i ginekologii, klinicheskoy immunologii i meditsinskoy genetiki. Sbornik nauchnykh trudov. Kiev-Lugansk: Izdatel’stvo LugDMU – Actual problems of obstetrics and gynecology, clinical immunology and medical genetics. Collection of scientific papers. Kiev-Lugansk: Publishing house LugGMU. 2010; 19:271-281. [In Russian]
18. Labunets IF. The peculiarities of age-related changes in the cellular composition of bone marrow, pineal melatonin-forming function, and thymus endocrine function in mice of different strains. Adv Gerontol. 2014; 4(2):134-139.
https://doi.org/10.1134/S2079057014020118
19. Bach JF, Bach MA, Blanot D, et al. Thymic serum factor (FTS). Bull Inst Pasteur. 1978; 76:325-398.
20. Friedenstein AJ, Chailakhian RK, Lalykina KS. The development of fibroblast colonies in monolaier cultures of guinea pig bone marrow and spleen colonies. Cell Tissue Kinet. 1970; 3:393-403.
PMid:5523063
21. Li S, Mareddy J, Tan DM, et al. A minimal common osteochondrocytic differentiation medium for the osteogenic and chondrogenic differentiation of bone marrow stromal cells in the construction of osteochondral graft. Tissue engineering Part A. 2009; 15(9):2481-2490.
https://doi.org/10.1089/ten.tea.2008.0463
PMid:19327021
22. Gregory CA, Gunn WG, Peister A, et al. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004; 329:77-84.
https://doi.org/10.1016/j.ab.2004.02.002
PMid:15136169
23. Fernando AA, Dominique B. Isolation, culture, and differentiation potential of mouse marrow stromal cells. Curr Prot Stem Cell Biol. 2008. DOI: 10.1002/9780470151808.sc02b03s7.
https://doi.org/10.1002/9780470151808.sc02b03s7
24. Mosman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1):55-63.
https://doi.org/10.1016/0022-1759(83)90303-4
25. Lakin GF. Biometriia [Biometrics]. Moscow: Vysshaia shkola; 1990. 352 p. [in Russian].
26. Land SC, Darakhshan F. Thymulin evokes IL-6-C/EBPβ regenerative repair and TNF-α silencing during endotoxin exposure in fetal lung explants. Am J Physiol Lung Cell Mol Physiol. 2004; 286:L473-L487.
https://doi.org/10.1152/ajplung.00401.2002
PMid:12639846
27. Orlic D, Kajstura J, Cimenti S. Bone marrow cells regenerate infarcted myocardium. Nature. 2011; 410:701-705.
https://doi.org/10.1038/35070587
PMid:11287958
28. Sekiya I, Larson BL, Vuoristo JT, et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004; 2:256-264.
https://doi.org/10.1359/JBMR.0301220
29. Pardo J, Schwerdt JI, Reggiani PC, et al. Physiology, molecular biology and therapeutic potential of the thymic peptide thymulin. Physiol Mini Reviews. 2012; 6(1):2-12.
30. Oksimets VM. Rol’ mezenkhimal’nykh stromal’nykh kletok v osteoimmunnykh protsessakh [Role of mesenchymal stromal cells in osteoimmune processes]. Ukraїns’kiy zhurnal klіnіchnoї ta laboratornoї meditsini – Ukrainian Journal of Clinical and Laboratory Medicine. 2011; 6(1):94-98. [In Russian]
31. Haddad JJ, Hanbali L. The anti-inflammatory and immunomodulatory activity of thymulin peptide is NF-kB dependent and involves the downregulation of I kB-α. Am J Med Biol Res. 2013; 1(2):41-49.
https://doi.org/10.12691/ajmbr-1-2-2
32. Boeloni J, Ocarino N, Goes A, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells of ovariectomized and nonovariectomized female rats with thyroid dysfunction. Pathol Res Pract. 2013; 209(1):44-51.
https://doi.org/10.1016/j.prp.2012.10.004
PMid:23164717
33. Panchenko AV, Popovich IG, Trashko AP, et al. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice. Biogerontology. 2015. DOI: 10.1007/s10522-015-9611-y.
https://doi.org/10.1007/s10522-015-9611-y
34. Anisimov VN, Popovich IG, Zabezhinski MA, et al. Sex differences in aging, life span and spontaneous tumorigenesis in 129/Sv mice neonatally exposed to metformin. Cell Cycle. 2015; 14(1):46-55.
https://doi.org/10.4161/15384101.2014.973308
PMid:25483062 PMCid:PMC4353070
35. Liu J, Huang F, He HW. Melatonin effects on Hard tissue: bone and tooth. Int J Mol Sci. 2013; 14:10063-10074.
https://doi.org/10.3390/ijms140510063
PMid:23665905 PMCid:PMC3676828
36. Litovka IG, Mazepa-Kryzhanivska VA, Berezovsky VYa. Vpliv melatonіnu na metabolіzm kіstkovoї tkanini. [Influence of melatonin on bone tissue metabolism]. Fіzіologіchniy zhurnal – Journal Physiological. 2014; 60(2):102-109. [In Ukrainian]
37. Butenko GM, Povoroznyuk VV, Labunets IF, et al. Vliyanie peptidnykh faktorov timusa i epifiza na strukturno-funktsional’noe sostoyanie kostnoy tkani pri starenii: eksperimental’no-klinicheskoe issledovanie [Influence of thymus peptide factors and epiphysis on the structural and functional state of bone tissue during aging: an experimental clinical study]. Probl Osteol. – Problems of Osteology. 2001; 4(3):4-10. [In Russian]
38. Immunobiologiya gormonov timusa [Immunobiology of thymus hormones]. Ed by. Grinevich YuA, Chebotarev DF. Kiev: Zdorov’e, 1989. 160 p. [In Russian]
39. Nikolskiy IS, Nikolskaya VV, Demchenko DL, et al. Potentiation of direct osteogenic differentiation of thymic multipotent stromal cells by prior co-cultivation with thymocytes. Cell and Organ Transplantology. 2016; 4(2):220-223.
https://doi.org/10.22494/cot.v4i2.59
40. Di NM, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002; 99(10):3838-3843.
https://doi.org/10.1182/blood.V99.10.3838
41. Le Blanc K, Tammik L, Sundberg D, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003; 57(1):11-20.
https://doi.org/10.1046/j.1365-3083.2003.01176.x
PMid:12542793
42. Chamberlain G, Fox J, Ashton B, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007; 25(11):2739-2749.
https://doi.org/10.1634/stemcells.2007-0197
PMid:17656645
43. Kyurkchiev D, Bochev I, Ivanova-Todorova E, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014; 6(5):552-570.
https://doi.org/10.4252/wjsc.v6.i5.552
PMid:25426252 PMCid:PMC4178255
44. Stolzing A, Sethe S, Scutt AM. Stressed stem cells: temperature response in aged mesenchymal stem cells. Stem Cells Dev. 2006; 15:478-487.
https://doi.org/10.1089/scd.2006.15.478
PMid:16978051

Labunets I, Rodnichenko A. The effects of different doses of thymulin in vivo and in vitro on some biological properties of bone marrow-derived multipotent mesenchymal stromal cells in mice of different strains. Cell and Organ Transplantology. 2018; 6(1):66-73. doi:10.22494/cot.v6i1.82

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.