Cell and Organ Transplantology. 2016; 4(2):175-180.
DOI: 10.22494/COT.V4I2.57
Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury
Medvediev V. V.1, Senchyk Yu. Yu.2, Draguntsova N. G.3, Dychko S. M.3, Tsymbaliuk V. I.1,3
1Bogomolets National Medical University, Kyiv, Ukraine
2Kyiv City Clinical Emergency Hospital, Kyiv, Ukraine
3A. P. Romodanov State Institute of Neurosurgery NAMS Ukraine, Kyiv, Ukraine
Abstract
Fetal cerebellar tissue contains the largest number of neurogenic progenitors committed on the differentiation into glutamatergic neurons that can be used in the development of promising new treatment for spinal cord injuries.
To evaluate the effect of fetal cerebellar tissue transplantation (FСTT) on the restoration of motor function after spinal cord injury in experiment.
Materials and methods. Animals: inbred albino Wistar rats (5.5 months males, weighting 300 grams); main experimental groups: 1 – spinal cord injury + transplantation of a fragment of fetal (E18) rat cerebellum (n = 15), 2 – spinal cord injury only (n = 40). Model of an injury – left-side spinal cord hemisection at Т11; monitoring of the ipsilateral hind limb function (IHLF) – the Вasso-Вeattie-Вresnahan (BBB) scale.
Results. FСTT normalizes the distribution of IHLF values, distorts the dynamics of the motor function recovery, transforming it from a progressive (in a control group) to the constant with variation within 3-3.6 points BBB during the experiment. FСTT causes early temporary positive effect on the functional state of the motor system, probably provided by mediator-dependent, neuroprotective, proangiogenic effect and remyelination. In our view, the gradual depletion of the FСTT positive effect due to resorption of the graft within the first 2 months is compensated by autoregenerative neoplastic process that is typical for the control group and by autoimmune utilization of myelin-associated inhibitors of axonal growth in the zone of injury that causes stability of the IHLF value during the observation period.
Conclusion. Transplantation of fetal cerebellar tissue causes a short-term positive effect on the motor function recovery limited by the 1st month of the traumatic process. Evaluation of such type of neurotransplantation effectiveness requires taking into account the dynamics of the spasticity and chronic pain.
Key words: spinal cord injury; fetal nervous tissue transplantation; motor function recovery; posttraumatic spasticity
Full Text PDF (eng) Full Text PDF (ua)
1. Lee BB, Cripps RA, Fitzharris М, et al. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014; 52(2):110-16. https://doi.org/10.1038/sc.2012.158 PMid:23439068 |
||||
2. Volpato FZ, Führmann T, Migliaresi C, et al. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials. 2013; 34(21):4945-55. https://doi.org/10.1016/j.biomaterials.2013.03.057 PMid:23597407 |
||||
3. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014; 35(24):6143-56. https://doi.org/10.1016/j.biomaterials.2014.04.064 PMid:24818883 |
||||
4. Assunção-Silva RC, Gomes ED, Sousa N, et al. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells International. 2015; Article ID 948040. doi.org/10.1155/2015/948040 https://doi.org/10.1155/2015/948040 |
||||
5. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zú-iga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International. 2015; Article ID 821279 | ||||
6. Siebert JR, Eade AM, Osterhout DJ. Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles. BioMed Research International. 2015; Article ID 752572 | ||||
7. Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater. 2015; 2(1):31-45. doi: 10.1093/rb/rbu017 https://doi.org/10.1093/rb/rbu017 |
||||
8. Tsintou M. Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res. 2015; 10(5):726-42. https://doi.org/10.4103/1673-5374.156966 PMid:26109946 PMCid:PMC4468763 |
||||
9. Woerly S, Doan VD, Evans-Martin F, et al. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci. Res. 2001; 66(6):1187-197. https://doi.org/10.1002/jnr.1255 PMid:11746452 |
||||
10. Woerly S, Doan VD, Sosa N, et al. Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int. J. Dev. Neurosci. 2001; 19(1):63-83. https://doi.org/10.1016/S0736-5748(00)00064-2 |
||||
11. Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001; 22(10):1095-111. https://doi.org/10.1016/S0142-9612(00)00354-9 |
||||
12. Woerly S, Doan VD, Sosa N, et al. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J Neurosci Res. 2004; 75(2):262-72. https://doi.org/10.1002/jnr.10774 PMid:14705147 |
||||
13. Tsymbaliuk VI, Medvediev VV. Spinnoy mozg. Elegiya nadezhdy: monografiya [Spinal cord. Elegy of hope: a monograph]. Vinnitsa: Nova Kniga – Vinnitsa: New Book, 2010. 944 p. | ||||
14. Woerly S, Awosika O, Zhao P, et al. Expression of heat shock protein (HSP)-25 and HSP-32 in the rat spinal cord reconstructed with Neurogel. Neurochem Res. 2005; 30(6-7):721-35. https://doi.org/10.1007/s11064-005-6866-8 PMid:16187209 |
||||
15. Li K, Javed E, Scura D, et al. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol. 2015; 271:479-92. https://doi.org/10.1016/j.expneurol.2015.07.020 PMid:26216662 PMCid:PMC4586993 |
||||
16. Dougherty BJ, Gonzalez-Rothi EJ, Lee KZ, et al. Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury. Exp Neurol. 2016; 278:22-26. https://doi.org/10.1016/j.expneurol.2016.01.017 PMid:26808660 |
||||
17. Gill LC, Gransee HM, Sieck GC, et al. Functional recovery after cervical spinal cord injury: role of neurotrophin and glutamatergic signaling in phrenic motoneurons. Respir Physiol Neurobiol. 2016; 226:128-36. https://doi.org/10.1016/j.resp.2015.10.009 PMid:26506253 |
||||
18. Tsymbaliuk VI, Medvediev VV. Neyrogennye stvolovye kletki [Neurogenic stem cells]. Kiev: Koval’ – Kiev: Koval, 2005. 596 p. | ||||
19. Döbrössy M, et al. Neurorehabilitation with neural transplantation. Neurorehabil. Neural Repair. 2010; 24(8):692-701. https://doi.org/10.1177/1545968310363586 PMid:20647502 |
||||
20. Zhang Q, et al. Multichannel silk protein/laminin grafts for spinal cord injury repair. J. Biomed. Mater. Res. A. 2016; doi:10.1002/jbm.a.35851 [Epub ahead of print]. https://doi.org/10.1002/jbm.a.35851 |
||||
21. Taylor L, Jones L, Tuszynski MH, et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci. 2006; 26(38):9713-21. https://doi.org/10.1523/JNEUROSCI.0734-06.2006 PMid:16988042 |
||||
22. Gao R, et al. Exogenous neuritin promotes nerve regeneration after acute spinal cord injury in rats. Hum Gene Ther. 2016; 27(7):544-54. https://doi.org/10.1089/hum.2015.159 PMid:27009445 |
||||
23. Hanna A, et al. Sustained release of Neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury. J Neurosci. Res. 2016; 94(7):645-52. https://doi.org/10.1002/jnr.23730 PMid:27015737 |
||||
24. Lent R, Azevedo FAC, Andrade-Moraes CH, et al. How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci. 2002; 35:199. doi:10.1111/j.1460-9568.2011.07923.x https://doi.org/10.1111/j.1460-9568.2011.07923.x |
||||
26. Hashimoto M, Hibi M. Development and evolution of cerebellar neural circuits. Dev Growth Differ. 2012; 54(3):373-89. https://doi.org/10.1111/j.1440-169X.2012.01348.x PMid:22524607 |
||||
27. Hoshino M. Neuronal subtype specification in the cerebellum and dorsal hindbrain. Dev. Growth Differ. 2012; 54(3):317-26. https://doi.org/10.1111/j.1440-169X.2012.01330.x PMid:22404503 |
||||
28. Marzban H, Del Bigio MR, Alizadeh J, et al. Cellular commitment in the developing cerebellum. Front Cell.Neurosci. 2015; doi: 10.3389/fncel.2014.00450 https://doi.org/10.3389/fncel.2014.00450 |
||||
29. Kumar M, Csaba Z, Peineau S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann. Clin Transl.Neurol. 2014; 1(12):968-981. doi: 10.1002/acn3.137 https://doi.org/10.1002/acn3.137 |
||||
30. Chang JC, Leung M, Gokozan HN, et al. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice. J Neuropathol Exp Neurol. 2015; 74(3):261-272. doi:10.1097/NEN.0000000000000171 https://doi.org/10.1097/NEN.0000000000000171 |
||||
31. Ma M, Wu W, Li Q, et al. N-myc is a key switch regulating the proliferation cycle of postnatal cerebellar granule cell progenitors. Sci Rep. 2015; 5:1–13. doi: 10.1038/srep12740 https://doi.org/10.1038/srep12740 |
||||
32. Leffler SR, Legué E, Aristizábal O,•et al. A mathematical model of granule cell generation during mouse cerebellum development. Bull. Math. Biol. 2016; 78(5):859-878. doi 10.1007/s11538-016-0163-3 https://doi.org/10.1007/s11538-016-0163-3 |
||||
33. Zhu T, Tang H, Shen Y, et al. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia. Am J Transl Res. 2016; 8(2):705-18. PMid:27158363 PMCid:PMC4846920 |
||||
34. Vriend J, Ghavami S, Marzban H. The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain. 2015; 8(1):1-14. doi 10.1186/s13041-015-0155-5 https://doi.org/10.1186/s13041-015-0155-5 |
||||
35. Ho Y, Li X, Jamison S, et al. PERK activation promotes medulloblastoma tumorigenesis by attenuating premalignant granule cell precursor apoptosis. Am J Pathol. 2016; 186(7):1939-1951. doi: 10.1016/j.ajpath.2016.03.004 https://doi.org/10.1016/j.ajpath.2016.03.004 |
||||
36. Dey A, Robitaille M, Remke M, et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene. 2016; doi:10.1038/onc.2015.491 [Epub ahead of print]. https://doi.org/10.1038/onc.2015.491 |
||||
38. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995; 12(1):1-21. https://doi.org/10.1089/neu.1995.12.1 PMid:7783230 |
||||
39. Sentilhes L, Michel C, Lecourtois M, et al. Vascular endothelial growth factor and its high–affinity receptor (VEGFR–2) are highly expressed in the human forebrain and cerebellum during development. J. Neuropathol. Exp Neurol. 2010; 69(2):111-28. https://doi.org/10.1097/NEN.0b013e3181ccc9a9 PMid:20084021 |
||||
40. Darland DC, Cain JT, Berosik MA, et al. Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development. Developmental Biology. 2011; 358:9-22. https://doi.org/10.1016/j.ydbio.2011.06.045 PMid:21803034 PMCid:PMC3189089 |
||||
41. Jankowski J, Miething A, Schilling K, et al. Cell death as a regulator of cerebellar histogenesis and compartmentation. Cerebellum. 2011; 10:373-92. https://doi.org/10.1007/s12311-010-0222-5 PMid:20941559 |
||||
42. Kilpatrick DL, Wang W, Gronostajski R, et al. Nuclear factor I and cerebellar granule neuron development: an intrinsic–extrinsic interplay. Cerebellum. 2012; 11:41-49. https://doi.org/10.1007/s12311-010-0227-0 PMid:22548229 PMCid:PMC3175246 |
||||
43. De Luca A, Cerrato V, Fuca E, et al.Sonic hedgehog patterning during cerebellar development. Cell. Mol. Life Sci. 2016; 73(2):291-303. doi 10.1007/s00018-015-2065-1 https://doi.org/10.1007/s00018-015-2065-1 |
||||
44. Yu SW, Friedman B, Cheng Q, et al. Stroke–evoked angiogenesis results in a transient population of microvessels. J Cereb Blood Flow Metab. 2007; 27:755-63. PMid:16883352 |
||||
45. Heckman CJ, Enoka RM. Motor unit. Compr. Physiol. 2012; 2:2629-82. doi: 10.1002/cphy.c100087 https://doi.org/10.1002/cphy.c100087 |
||||
46. D’Amico JM, Condliffe EG, Martins KJB, et al. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Int Neurosci. 2014; 8:1-24. doi: 10.3389/fnint.2014.00036 https://doi.org/10.3389/fnint.2014.00036 |
||||
47. Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited: a four–phase model. Spinal Cord. 2004; 42:383-95. https://doi.org/10.1038/sj.sc.3101603 PMid:15037862 |
||||
48. Wienecke J, Westerdahl AC, Hultborn H, et al. Global gene expression analysis of rodent motor neurons following spinal cord injury associate molecular mechanisms with development of post-injury spasticity. J Neurophysiol. 2010; 103(2):761-78. https://doi.org/10.1152/jn.00609.2009 PMid:19939961 |
Medvediev VV, Senchyk YuYu, Draguntsova NG, Dychko SM, Tsymbaliuk VI. Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury. Cell and Organ Transplantology. 2016; 4(2):175-180. doi:10.22494/COT.V4I2.57
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.