Cell and Organ Transplantology. 2014; 2(2):132-135.
DOI: 10.22494/COT.V2I2.30
Possibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells
Mamchur A. A.
State Institute of Genetic and Regenerative Medicine of Ukrainian NAMS, Kyiv, Ukraine
Abstract
In recent years the concept of tumor stem cells or tumor-initiating cells has gained a wide recognition. Hence the amount of data pertaining to involvement of the latter in the sarcomogenesis increases. At the time being the properties of the tumor-initiating cells are actively studied. As has been found, they are characterized by self-renewal, high migration potential and high level of resistance to chemotherapy. The given characteristics are also analogous for the multipotent mesenchymal stem cells (MMSCs) which are involved in the regeneration processes. The above-said can point to the possibility of the existence of the transformed MMSCs analogs as tumor-initiating cells. In turn, the transformed MMSCs can differ by immortal phenomenon conditioned by high level of telomerase expression, antigens profile, epigenetic and genomic changes. As a consequence, the transformed MMSCs attain potential to form sarcoma.
1. Augello A, Kurth TB, Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells and Materials. 2010; 20:121-133. https://doi.org/10.22203/eCM.v020a11 PMid:21249629 |
||||
2. Zhao-Jun Liu, Ying Zhuge, Omaida C. Velazquez Trafficking and Differentiation of Mesenchymal Stem Cells. J CellBiochem. 2009; 106(6):984-991. https://doi.org/10.1002/jcb.22091 PMid:19229871 |
||||
3. Hass R, Kasper C, Böhm S, Jacobs R, et al. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling. 2011; 9(12):1-14. https://doi.org/10.1186/1478-811x-9-12 |
||||
4. Sarugaser R, Hanoun L, Keating A, et al. Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy. PlosOne. 2009; 4(8):e6498. https://doi.org/10.1371/journal.pone.0006498 PMid:19652709 PMCid:PMC2714967 |
||||
5. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004; 103(5):1662-1668. https://doi.org/10.1182/blood-2003-09-3070 PMid:14592819 |
||||
6. Morikawa S, Mabuchi Y, Kubota Y, et al. Prospectivе identification, isolation, and systemic transplantation of multipotent mesenchymal stem cell sinmurine bone marrow. J ExpMed. 2009; 206(11):2483-2496. https://doi.org/10.1084/jem.20091046 PMid:19841085 PMCid:PMC2768869 |
||||
7. Nadri S, Soieimani M, HosSeni RH, et al. Anefficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 2007; 51: 723-729. https://doi.org/10.1387/ijdb.072352ns PMid:17939119 |
||||
8. Eslaminejad MB, Nasarian H, Taghiyar L. Mesenchymal Stem Cell Isolation from the Removed Medium Rat’s Bone Marrow Primary Culture and their Differentiation into Skeletal Cell Lineages. Yakhteh Medical Journa. 2008; 10(1):65-72. | ||||
9. Tae SK, Lee SH, Park JS, et al. Mesenchymal stem cells for tissue engineering and regenerative medicine. BiomedMater. 2006; 1(2):63-71. https://doi.org/10.1088/1748-6041/1/2/003 |
||||
10. Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J CellPhysiol. 2007; 213(2):341-347. https://doi.org/10.1002/jcp.21200 |
||||
11. Mishra PJ, Humeniuk R, Medina DI, et al. Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells. CancerRes. 2008; 68(11):4331-4339. https://doi.org/10.1158/0008-5472.can-08-0943 |
||||
12. Mishra PJ, Glod JW, et al. Mesenchymal stem cells: flip side of the coin. CancerRes. 2009; 69(4):1255-1258. https://doi.org/10.1158/0008-5472.can-08-3562 |
||||
13. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. CancerMetastasisRev. 2010; 29(2):249-261. https://doi.org/10.1007/s10555-010-9222-7 PMid:20411303 |
||||
14. Houthuijzen J M, Daenen LGM, Roodhart JML, et al. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012; 106(12):1901-1906. https://doi.org/10.1038/bjc.2012.201 PMid:22596239 PMCid:PMC3388567 |
||||
15. Wong R. S. Y. Mesenchymal Stem Cells: Angels or Demons? Journal of Biomedicine and Biotechnology. 2011; 2011:1-8. | ||||
16. Yen BL, Yen ML. Mesenchymal Stem Cells and Cancer — for Better or for Worse? J. Cancer Mol. 2008; 4(1):5-9. | ||||
17. Liu Y, Han Z P, Zang SS, et al. Effects of Inflammatory Factors on Mesenchymal Stem Cells and Their Role in the Promotion of Tumor Angiogenesis in colon Cancer. J Biol Chem. 2011; 286(28):25007-25015. https://doi.org/10.1074/jbc.M110.213108 PMid:21592963 PMCid:PMC3137074 |
||||
18. Han Z, Jing Y, Zhang S, et al. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. CellBiosci. 2012; 2(1):2-8. https://doi.org/10.1186/2045-3701-2-8 |
||||
19. Djouad F, Plence C, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003; 102(10):3837-3844. https://doi.org/10.1182/blood-2003-04-1193 PMid:12881305 |
||||
20. DeMiguel MP, Fuentes-Julian S, Blazquez-Martinez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012; 12(5): 574-591. https://doi.org/10.2174/156652412800619950 |
||||
21. LeBlanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J InternMed. 2007; 262(5):509-525. https://doi.org/10.1111/j.1365-2796.2007.01844.x PMid:17949362 |
||||
22. Nakamizo A. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005; 65(8):3307-3318. PMid:15833864 |
||||
23. Lu Y R, Yuan Y, Wang X J, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008; 7(2):245-251. https://doi.org/10.4161/cbt.7.2.5296 PMid:18059192 |
||||
24. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J ExpMed. 2006; 203(15):1235-1247. https://doi.org/10.1084/jem.20051921 PMid:16636132 PMCid:PMC2121206 |
||||
25. Serakinci N, Guldberg P, Burns JS, et al. Adult human mesenchymal stem cell as target for neoplastic transformation. Oncogene. 2004; 23(29):5095-5098. https://doi.org/10.1038/sj.onc.1207651 PMid:15107831 |
||||
26. Rubio D, Garcia-Castro J, Martín M C. Spontaneous Human Adult Stem Cell Transformation. Cancer Res. 2005; 65(8):3035-3039. PMid:15833829 |
||||
27. Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69(13):5331-5339. https://doi.org/10.1158/0008-5472.CAN-08-4630 PMid:19509230 |
||||
28. Zhou B-B S, Zhang H, Damelin M, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. NatureReviewsDrugDiscovery. 2009; 86:806-823. https://doi.org/10.1038/nrd2137 PMid:19794444 |
||||
29. Guo W, Lasky J L, Wu H, et al. Cancer stem cells. PediatrRes. 2006; 59(4):59-64. https://doi.org/10.1203/01.pdr.0000203592.04530.06 |
||||
30. Yi S, Nan KJ. Tumour-initiating stem cells in liver. Cancer Biol. Ther. 2008; 7(3):325-330. https://doi.org/10.4161/cbt.7.3.5527 PMid:18285703 |
||||
31. Schatton T, Frank, N Y, Frank M H. Identification and targeting of cancer stem cells. Bio essays. 2009; 31(10):1038-1049. https://doi.org/10.1002/bies.200900058 |
||||
32. Adhikari AS, Agarwal N, Wood BM, et al. CD117 and Stro-1identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res. 2010; 70(11): 4602-4612. https://doi.org/10.1158/0008-5472.CAN-09-3463 PMid:20460510 PMCid:PMC3139225 |
||||
33. Fujii H, Honoki K, Tsujiuchi T, et al. Sphere-forming stem like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 2009; 34(5):1381-1386. PMid:19360350 |
||||
34. Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2012; 22(1):62-77. https://doi.org/10.1038/cr.2011.157 PMid:21931359 PMCid:PMC3351912 |
||||
35. Kim SG, Jeon CH, Suh HS, et al. P-glycoprotein expression in extracellular matrix formation of chondrogenic differentiation of human adult stem cells. Cell Biol Int. 2007; 31(9):1042-148. https://doi.org/10.1016/j.cellbi.2007.03.018 PMid:17468018 |
||||
36. Mohseny AB, Hogendoorn PC. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells. 2011; 29(3):397-403. https://doi.org/10.1002/stem.596 PMid:21425403 |
||||
37. Tang N, Song WX, Luo J, et al. Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res. 2008; 466(9):2114-2130. https://doi.org/10.1007/s11999-008-0335-z PMid:18563507 PMCid:PMC2492997 |
||||
38. Boeuf S, Kunz P, Hennig T, et al. A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. J Pathol. 2008; 216(2):158-166. https://doi.org/10.1002/path.2389 PMid:18702172 |
||||
39. Kamilova TA, Novik AA, Tsygan VN. Vvedenie v molekuliarnuiu biologiiu kantserogeneza [Introduction to the molecular biology of carcinogenesis]. GoetarMed. M., 2004. 222 p. PMid:15188736 |
||||
40. Funes J.M. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci U S A. 2007; 104(15): 6223-6228. https://doi.org/10.1073/pnas.0700690104 PMid:17384149 PMCid:PMC1851087 |
||||
41. Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2012; 22(1):62-77. https://doi.org/10.1038/cr.2011.157 PMid:21931359 PMCid:PMC3351912 |
Mamchur AA. Рossibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells. Cell and Organ Transplantology. 2014; 2(2):132-135. doi: 10.22494/COT.V2I2.30
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.