Cell and Organ Transplantology. 2018; 6(2):145-151.
DOI: 10.22494/cot.v6i2.87
Neuroprotective effect of melatonin in mice with toxic cuprizone model of demyelination and possible pathways of its realization
Labunets I. F., Rodnichenko A. E., Melnyk N. O., Utko N. O.
State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
Abstract
The search for tools that increase the effectiveness of cell therapy of demyelinating pathology is relevant. They may be preparations that affect the pathogenetic factors of this pathology, in particular, the pineal hormone melatonin.
The purpose of the study is to evaluate the involvement of immune system and antioxidant defense in the implementation of the protective effects of melatonin on morphofunctional disorders in the central nervous system induced by neurotoxin cuprizone.
Materials and methods. The toxic demyelination model was induced on 129/Sv mice at the age of 3-5 months by adding cuprizone to food for 3 weeks. Since the 7th day of cuprizone administration, melatonin was injected intraperitoneally at 6 p.m. daily, at a dose of 1 mg/kg. In the brain of mice, the proportion of CD3+, Nestin+ cells and phagocytic macrophages, the content of malondialdehyde and the activity of antioxidant enzymes was determined. Blood serum was tested for thymic hormone thymulin levels. In the animals, we evaluated the structure of the brain and spinal cord neurons by Nissl staining of histological sections as well as analyzed behavioural reactions in the «open field» test.
Results. In the brain of the mice receiving cuprizone, the proportion of CD3+ and Nestin+ cells, active macrophages and malondialdehyde content increased, glutathione peroxidase and glutathione reductase levels decreased. In the brain and spinal cord of the mice with a cuprizone diet, the proportion of altered neurons increased, and motor and emotional activity decreased. The administration of melatonin results in a decrease in the relative number of CD3+ cells, active macrophages and malondialdehyde content, increased activity of glutathione peroxidase, glutathione reductase and level of thymulin. In such mice, the proportion of unchanged neurons increases as the number of Nestin+ cells decreases and behavioural responses are also improved.
Conclusions. The neuroprotective effect of melatonin in demyelinating pathology is realized through the factors of the immune system and oxidative stress. The results may be useful in the development of new biotechnological approaches to the treatment of demyelinating pathology, in particular, multiple sclerosis.
Key words: cuprizone; melatonin; neuron; T-lymphocytes; brain macrophages; thymulin; antioxidant enzymes
Full Text PDF (eng) Full Text PDF (ua)1. Mishchenko TS, Shulga OD, Bobryk NV, et al. Rozsіyaniy skleroz: global’nі perspektivi. [Multiple Sclerosis: Global Perspectives]. Ukr Med Chasopis – Ukr Med J. 2014; 101(3):84-87. [In Ukrainian] | ||||
2. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders – time for clinical translation? JCI. 2010; 120(1):29-40. https://doi.org/10.1172/JCI40543 PMid:20051634 PMCid:PMC2798697 |
||||
3. Rybachuk O, Pivneva T. Contribution of neural stem cells to regeneration of the central nervous system. Int J Phy Path. 2014; 5(1):83-96. https://doi.org/10.1615/IntJPhysPathophys.v5.i1.90 |
||||
4. Abdurasulova IN, Klimenko VM. Rol’ immunnykh i glial’nykh kletok v protsessakh neyrodegeneratsii. [The role of immune and glial cells in the processes of neurodegeneration]. Med Akadem Zhurnal – Med Acad J. 2011; 11(1):12-29. [In Russian] | ||||
5. Gonzalez H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014; 11(201):11. https://doi.org/10.1186/s12974-014-0201-8 |
||||
6. Cardinali DP, Esquifino AI, Srinivasan V, et al. Melatonin and the immune system in aging. Neuroimmunomodulation. 2008; 15(4-6):272-278. https://doi.org/10.1159/000156470 PMid:19047804 |
||||
7. Manchester LC, Coto-Montes A, Boga JA. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015; 59(4):403-419. https://doi.org/10.1111/jpi.12267 PMid:26272235 |
||||
8. Kashani IR, RaJabi Z, Akbari M, et al. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res. 2014; 232(9):2835-2846. https://doi.org/10.1007/s00221-014-3946-5 PMid:24798398 |
||||
9. Labunets IF, Rodnichenko AE, Utko NA, et al. Neyroprotektornoe vliyanie melatonina pri eksperimental’nykh modelyakh patologii nervnoy sistemy [Neuroprotective effect of melatonin in experimental models of the nervous system pathology]. Cell and organ transplantology. 2017; 5(2):241-242. [In Russian] | ||||
10. Gudi V, Gingele S, Skripuletz Th, et al. Glial response during cuprizon-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci. 2014; 8 (Article 73). 24 p. | ||||
11. Praet J, Guglielmetti C, Berneman Z, et al. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. J Neubiorev. 2014. 47. P. 485-505. https://doi.org/10.1016/j.neubiorev.2014.10.004 |
||||
12. Labunets IF, Melnik NO, Kuzminova IA, et al. Vpliv neyrotoksinu «kuprizon» na povedіnkovі reaktsії ta morfofunktsіonal’nі zmіni neyronіv golovnogo ta spinnogo mozku u mishey. [Influence of neurotoxin “cuprizone” on behavioural reactions and morphofunctional changes of neurons of a brain and a spinal cord in mice]. Zh NAMN Ukraїni – JNAMSU. 2014; 20(4):402-408. [In Ukrainian] | ||||
13. Labunets IF, Melnik NO, Kuzminova IA, et al. Patent Ukraїni na korisnu model’ № 94458 u (UA), MPK G09B 23/28 «Sposіb modelyuvannya strukturnikh zmіn neyronіv tsentral’noї nervovoї sistemi pri demієlіnіzuyuchikh zakhvoryuvannyakh (2006.01).» [Patent of Ukraine for Utility Model #94458 u (UA), MPK G09B 23/28 “Method for modeling structural changes in neurons of the central nervous system in demyelinating diseases (2006.01)”]. Publ. 10.11.2014. Bul. 21. 3 p. [In Ukrainian] | ||||
14. Labunets IF. Struktura deyakikh organіv nervovoї ta іmunnoї sistem za umov demієlіnіzatsії ta remієlіnіzatsії [Possibilities and prospects of the application of the in vivo and in vitro toxic cuprizone model for demyelination in experimental and clinical neurology (literature review and own research results)]. Ukraїns’kiy nevrologіchniy zhurnal – Ukrainian Neurological Journal. 2018; 2:63-68. [In Ukrainian] | ||||
15. Labunets IF, Melnyk NO, Rodnichenko AE, et al. Cuprizone-Induced Disorders of Central Nervous System Neurons, Behavioral Reactions, Brain Activity of Macrophages and Antioxidant Enzymes in the Mice of Different Ages: Role of Leukemia Inhibitory Factor in their Improvement. J Aging Geriatr Med. 2017; 1(2). 8 p. Doi: 10.4172/AGM.1000104. | ||||
16. Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, et al. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res. 2015; 287:265-275. https://doi.org/10.1016/j.bbr.2015.03.038 PMid:25843560 |
||||
17. Labunets IF, Melnik NO., Rymar SYu. Patent na korisnu model’ № 104976 Ukraїna, MPK G09B23/28 «Sposіb modelyuvannya regeneratsії ushkodzhenikh neyronіv golovnogo mozku pri neyrodegenerativnikh zakhvoryuvannyakh [Patent for utility model #104976 Ukraine, МPК G09B23/28 «Method of regeneration of damaged neurons of the brain in neurodegenerative diseases; #u2015 09252; stat. 06.10.2015 ; publ. 25.02.2016, Bul. #4. [In Ukrainian] | ||||
18. Jordan FL, Wynder HJ, Booth PL, et al. Method for the identification of brain macrophages/phagocytic cells in vitro. J Neurosci Res. 1990; 26(1):74-82. https://doi.org/10.1002/jnr.490260109 PMid:2359147 |
||||
19. Doklіnіchnі doslіdzhennya lіkars’kikh zasobіv (metodichnі rekomendatsії). Pіd red. O. V. Stefanova [Preclinical research of medicinal products (guidelines). By ed. OV Stefanov. Kyiv: Avicenna, 2001. 528 p. [In Ukrainian] | ||||
20. Bach JF, Bach MA, Blanot D, et al. Thymic serum factor (FTS). Bull Inst Pasteur (Paris). 1978. 76. P. 325-398. | ||||
21. Labunets IF, Rodnichenko AE, Vasyliev RG. Sposobnost’ kletok-predshestvennits granulotsitov i makrofagov kostnogo mozga myshey raznykh liniy k obrazovaniyu koloniy in vitro pri izmenenii soderzhaniya timulina v organizme i v kul’ture kletok. [Capacity of bone marrow granulocyte and macrophage precursors in mice of different strains for in vitro colony formation under changed thymuline level in the organism and cell cultures. Genes & Cells. 2017; 12(2):97-103. [In Russian] | ||||
22. Uchiyama M, Mohara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test.Anal Biochem. 1978; 86(1):271-278. https://doi.org/10.1016/0003-2697(78)90342-1 |
||||
23. Labunets IF, Talanov SA, Vasilyev RG, еt al. Thymic hormones, antioxidant enzymes and neurogenesis in bulbus olfactorius of rats with hemiparkinsonism: effect of melatoni. Int J Phy Path. 2016; 7(4):285-298. https://doi.org/10.1615/IntJPhysPathophys.v7.i4.10 |
||||
24. Franco-Pons N, Torente M, Colomina M. T, et al. Behavioural deficits in the cuprizone-induced murine model of dymyelination/remyelination. Toxicol Lett. 2007; 30(3):205-213. https://doi.org/10.1016/j.toxlet.2007.01.010 PMid:17317045 |
||||
25. Amikishieva AV. Povedencheskoe fenotipirovanie: sovremennye metody i oborudovanie [Behavioral Phenotyping: Modern Methods and Equipment]. Vestnik VOGiS – Vavilov Journal of Genetics and Breeding. 2009; 13(3):529-542. [In Russian] | ||||
26. Fish GS. Animal models and human neuropsighiatric disorders. Behav Genet. 2007; 37:1-10. https://doi.org/10.1007/s10519-006-9117-0 PMid:17047896 |
||||
27. Lakin GF. Biometriya [Biometrics]. Moskva: Vysshaya shkola – Moscow: High School, 1990. 352 p. [In Russian] | ||||
28. Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int. 2013; 62(5):803-19. https://doi.org/10.1016/j.neuint.2012.12.016 PMid:23291248 |
||||
29. Kang Z, Liu L, Spangler R, et al. IL-17-induced Act1-mediated ignalling is critical for cuprizone-induced demyelination. J Neurosci. 2012; 32(4):8284-8292. https://doi.org/10.1523/JNEUROSCI.0841-12.2012 PMid:22699909 PMCid:PMC3412399 |
||||
30. Labunets IF. Izmeneniya endokrinnoy funktsii timusa, makrofagov i T-limfotsitov golovnogo mozga u myshey raznogo vozrasta posle vvedeniya neyrotoksina kuprizona i tsitokina [Changes in the endocrine function of the thymus, macrophages and T-lymphocytes of the brain in mice of different ages after the administration of cuprozone neurotoxin and cytokine] Mezhdunarodnyy nevrologicheskiy zhurnal – International Neurological Journal. 2018; 98(4):114-120. [In Russian] | ||||
31. Ganong VF. Fіzіologіya lyudini [Human physiology]. L’vіv: Bak – Lviv: Bak, 2002. 784 p. | ||||
32. Rodnichenko А, Utko N, Labunets I. In vitro cuprizone model as a tool to study remyelination factors». 11th FENS Forum of neuroscience (7-11 July 2018, Berlin, Germany). Abstract number F18-0774. | ||||
33. Labunets IF, Rodnichenko AYe. Sposіb otsіnki remієlіnіzuyuchogo efektu bіologіchno aktivnikh rechovin pri modelyuvannі in vitro demієlіnіzuyuchikh ushkodzhen’ klіtin golovnogo mozku, zokrema mozochka [Method of evaluation of the remyelinating effect of bioactive substances in the simulation in vitro of demyelinating damages of brain cells, in particular, the cerebellum]. #u2018 04204 from 17.04.2018. Decision on issuing a declarative patent for a utility model from 04.09.2018 #23398/ЗУ/18. [In Ukrainian] | ||||
34. Vakilzadeh G, Khodagholi F, Ghadin T, et al. The effect of melatonin on behavioural, molecular, and histopathological changes in cuprizone model of demyelination. Mol Neurobiol. 2016; 53(7):4675-4684. https://doi.org/10.1007/s12035-015-9404-y PMid:26310973 |
||||
35. Haddad JJ, Hanbali LH. The anti-inflammatory and immunomodulatory activity of thymulin peptide is NF-kB dependent and involves the downregulation of I kB-α. Am J Med Biol Res. 2013; 1(2):41-49. https://doi.org/10.12691/ajmbr-1-2-2 |
||||
36. Wurtman R. Multiple sclerosis, melatonin and neurobehavioral diseases. Front. Endocrinol. 2017. 8. Article 280. DOI:10.3389/fendo.2017.00280. https://doi.org/10.3389/fendo.2017.00280 |
||||
37. Sarlak G, Jenwitheesuk А, Chetsawang B, et al. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J. Pharmacol.Sci. 2013; 123:9-24. | ||||
38. Labunets IF, Chaikovsky YuB, Savosko SI, et al. Effects of melatonin on the behavioral indices and structural characteristics of cerebral and spinal neurons of rats with experimental hemiparkinsonism. Neurophysiology. 2018; 50(1):11-22. https://doi.org/10.1007/s11062-018-9712-8 |
||||
Labunets I, Rodnichenko A, Melnyk N, Utko N. Neuroprotective effect of melatonin in mice with toxic cuprizone model of demyelination and possible pathways of its realization. Cell and Organ Transplantology. 2018; 6(2):145-151. doi:10.22494/cot.v6i2.87
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.