1. Chertkov IL, Gurevich OA. Stvolovaya krovetvornaya kletka i ee mikrookruzhenie [Stem cells and their microenvironment]. Moscow: Meditsina, 1984, 240 p. [in Russian]. |
|
2. Howe RJ, Howe MA, Tankovich NI, et al. The Miracle of Stem Cells: How Adult Stem Cells Are Transforming Medicine Hardcover. Rancho Santa Fe: Stemeddica Cell Technologies, 2011. 282 p. |
|
3. Bond VP, Fliedner ТМ, Archambeau JO. Mammalian radiation lethality. New York: Acad. Press, 1965. 320 p. |
|
4. Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science. 2002; 298(5593): 601-4. https://doi.org/10.1126/science.1073823 PMid:12228721 |
|
5. Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002; 298(5593): 597-600. https://doi.org/10.1126/science.1072530 PMid:12228720 |
|
6. Ema H, Sudo K, Seita J, et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell. 2005; 8(6): 907-14.https://doi.org/10.1016/j.devcel.2005.03.019 PMid:15935779 |
|
7. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005; 121(7): 1109–21.https://doi.org/10.1016/j.cell.2005.05.026 PMid:15989959 |
|
8. Kiel MJ, Yilmaz OH, Morrison SJ. CD150-cells are transiently reconstituting multipotent progenitors with little or no stem cell activity. Blood. 2008; 111(8): 4413-14. https://doi.org/10.1182/blood-2007-12-129601 PMid:18398056 PMCid:PMC2293285 |
|
9. Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med. 2010; 207(6): 1173-82. https://doi.org/10.1084/jem.20091318 PMid:20421392 PMCid:PMC2882827 |
|
10. Petzer AL, Hogge DE, Landsdorp PM, et al. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA. 1996; 93(4): 1470-74. https://doi.org/10.1073/pnas.93.4.1470 PMid:8643656 PMCid:PMC39963 |
|
11. Bradford GB, Williams B, Rossi R, et al. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol. 1997; 25(5): 445-53. |
|
12. Cheshier SH, Morrison SJ, Liao X, et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA. 1999; 96(6): 3120-25.https://doi.org/10.1073/pnas.96.6.3120 PMid:10077647 PMCid:PMC15905 |
|
13. Sudo K, Ema H, Morita Y, et al. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000; 192(9): 1273-80. https://doi.org/10.1084/jem.192.9.1273 PMid:11067876 PMCid:PMC2193349 |
|
14. Wilson A, Laurenti E, Oser G, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008; 135(6): 1118-29.https://doi.org/10.1016/j.cell.2008.10.048 PMid:19062086 |
|
15. Morita Y, Iseki A, Okamura S, et al. Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol. 2011; 39(3): 351-59. https://doi.org/10.1016/j.exphem.2010.12.008 PMid:21185906 |
|
16. Brown G, Mooney CJ, Alberti-Servera L, et al. Versatility of stem and progenitor cells and the instructive actions of cytokines on hematopoiesis. Crit Rev Clin Lab Sci. 2015; 52(4): 168-79. |
|
17. Magli МС, Iscove NN, Odartchenko N. Transient nature of early haemopoietic spleen colonies. Nature. 1982; 295(5849): 527-29. https://doi.org/10.1038/295527a0 |
|
18. Dexter TM. Gemopoeticheskie rostovye faktory: biologicheskie effekty i perspektivy klinicheskogo primeneniya [Hematopoietic growth factors: biological effects and perspectives of clinical applications]. Ontogenez – Ontogenesis. 1991; 22(4): 341-64 [in Russian]. |
|
19. Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development. 2005; 132(5): 1127-36. https://doi.org/10.1242/dev.01615 PMid:15689383 |
|
20. Al-Drees MA, Yeo JH, Boumelhem BB, et al. Making Blood: The Haematopoietic Niche throughout Ontogeny. Stem Cells Int. 2015; 2015. Available: Available: http://dx.doi.org/10.1155/2015/571893.https://doi.org/10.1155/2015/571893 |
|
21. Tavassoli М, Maniatis A, Crosby WH. Induction of sustained hematopoiesis in fatty marrow. Blood. 1974; 43(1): 33-8. |
|
22. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol. 2007; 25: 745-85. https://doi.org/10.1146/annurev.immunol.25.022106.141538 PMid:17201678 |
|
23. Orkin SH, Zon Orkin LI. SnapShot: hematopoiesis. Cell. 2008; 132(4): 712. |
|
24. Kricun ME. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol. 1985; 14(1): 10-19. https://doi.org/10.1007/BF00361188 PMid:3895447 |
|
25. O’Malley DP, Kim YS, Perkins SL, et al. Morphologic and immunohistochemical evaluation of splenic hematopoietic proliferations in neoplastic and benign disorders. Mod Pathol. 2005; 18(12): 1550-61. https://doi.org/10.1038/modpathol.3800480 |
|
26. Weiss L. A scanning electron microscopic study of the spleen. Blood. 1974; 43(5): 665-91. |
|
27. Kostyushev DS, Simirsky VN, Song S, et al. Stvolovye kletki i mikrookruzhenie: integratsiya biokhimicheskikh i mekhanicheskikh faktorov [Stem cells and the microenvironment: the integration of biological and mechanical factors]. Uspekhi sovremennoy biologii – Biology Bulletin Reviews. 2014; 134(1): 3-18 [in Russian]. |
|
28. Payushina OV. Krovetvornoe mikrookruzhenie i rol’ mezenkhimnykh stromal’nykh kletok v ego organizatsii [Hematopoietic microenvironment and the role of mesenchymal stromal cells in his organization]. Uspekhi sovremennoy biologii – Biology Bulletin Reviews. 2015; 135(1): 52-63 [in Russian]. |
|
29. Goodell M. Introduction to a review series on hematopoietic stem cells. Blood. 2015; 125(17): 2587. https://doi.org/10.1182/blood-2015-03-615005 PMid:25762178 |
|
30. Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal’nye kletki, otvetstvennye za perenos mikrookruzheniya v krovetvornoy i limfoidnoy tkani [Stromal cells responsible for transferring the microenvironment in hematopoietic and lymphoid tissue]. Probl. Gematol. – Problems of Hematology. 1973; 10: 14-23 [in Russian]. |
|
31. Wolf NS, Trentin JJ. Hematopoietic colony studies. V. Effect of hematopoietic organ stroma on differentiation of pluripotent stem cells. J Exp Med. 1968; 127(1): 205-14.https://doi.org/10.1084/jem.127.1.205 |
|
32. Chertkov IL, Gurevich OA, Udalov GA. Izuchenie kletok, perenosyashchikh krovetvornoe mikrookruzhenie, s pomoshch’yu geterotopnoy transplantatsii kostnogo mozga [Studying of cells undergoing hematopoietic microenvironment by heterotopic transplantation of bone marrow]. Rol’ stvolovyh kletok v lejkozo- i kancerogeneze – The role of stem cells in the leukosis- and carcinomagenesis. Kiev, 1977; pp. 16-18 [in Russian]. |
|
33. Amsel S, Maniatis A, Tavassoli М, et al. The significance of intramedullary cancellous bone formation in the repair of bone marrow tissue. Anat Rec. 1969; 164(1): 101-11.https://doi.org/10.1002/ar.1091640107 PMid:5769818 |
|
34. Knospe WH, Gregory SA, Fried W, et al. Stimulation of hematopoiesis by femoral marrow curettage in sublethally irradiated mice. Blood. 1973; 41(4): 519-27. |
|
35. Mawdsley R, Harrison GA. Fate of transplanted bone. Nature. 1963; 198(4879): 495-96. https://doi.org/10.1038/198495a0 |
|
36. Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK, et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol. 1978; 6(5): 440-44. |
|
37. Chui DHK, Russel ES. Fetal erythropoiesis in steel mutantmice. I. A morphological study of erythroid cell development in fetal liver. Developm Biol. 1974; 40(2): 256-69. |
|
38. Kitamura Y, Go S. Decreased production of mast cells in SlSld anemic mice. Blood. 1979; 53(3): 492-97. |
|
39. Altus MS, Bernstein SE, Russel ES, et al. Defect extrinsic to stem cells in spleens of steel anemic mice. Proc Soc exp Biol Med (N. Y.). 1971; 138(3): 985-88. |
|
40. Wolf NS. Dissecting the hematopoietic microenvironment. II. The kinetics of the erythron of the Sl Sld mouse and the dual nature of its anemia. Cell Tiss Kinet. 1978; 11(4): 325-34. |
|
41. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978; 4(1-2): 7-25. |
|
42. Samoilina NL. Proliferativnaya aktivnost’ stvolovykh krovetvornykh «letok v dlitel’nykh organotipicheskikh kul’turakh embrional’noy pecheni myshey [The proliferative activity of hematopoietic stem cells into the long-term organotypic cultures of embryonic mouse liver]. Byull. eksper. Biol. – Bull. Exper. Biol. 1982; 7: 94-5 [in Russian]. |
|
43. Dexter ТМ, Moore MAS, Sheridan APC. Maintenance of hematopoietic stem cells and production of differentiated progeny in allogeneic and se- miallogeneic bone marrow chimeras in vitro. J exp Med. 1977; 145(6): 1612-16. https://doi.org/10.1084/jem.145.6.1612 |
|
44. Moore MA, Sheridan AP, Allen TD, et al. Prolonged hematopoiesis in a primate bone marrow culture system: characteristics of stem cell production and the hematopoietic microenvironment. Blood. 1979; 54(4): 775-93. |
|
45. Friedenstein AJ, Luria EA. Kletochnye osnovy krovetvornogo mikrookruzheniya [Cell basics of hematopoietic microenvironment]. Moscow: Medicine, 1980, 216 p. [in Russian]. |
|
46. Bentley SA, Foidart JM. Some properties of marrow derived adherent cells in tissue culture. Blood. 1980; 56(6): 1006-12. |
|
47. Bentley SA. Close range cell: cell interaction required stem cell mainte¬nance in continuous bone marrow culture. Exp Hematol. 1981; 9(3): 308-12. |
|
48. Blackburn MJ, Goldman JM. Increased haemopoietic cell survival in vitro induced by a human marrow fibroblast factor. Brit J Haemat. 1981; 48(1): 117-25. |
|
49. Breems DA, Blokland EA, Siebel KE, et al. Stroma-contact prevents loss of hematopoietic stem cell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood. 1998; 91(1): 111-17. |
|
50. Majumdar MK, Thiede MA, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res. 2000; 9(6): 841-48. https://doi.org/10.1089/152581600750062264 PMid:11177595 |
|
51. Petevka NV, Goncharov NV, Kostyunina VS, et al. Ekspansiya krovetvornykh kletok pupovinnoy krovi cheloveka v usloviyakh sokul’tivirovaniya s mezenkhimnymi stromal’nymi kletkami kostnogo mozga [Expansion of human cord blood hematopoietic cells in a culture with a bone marrow mesenchymal stromal cells]. Zhurnal NAMN Ukraїni – Journal of NAMS of Ukraine. 2012; 18(Suppl.):120-21 [in Russian]. |
|
52. Kostyunina VS, Petevka NV, Goncharov NV, et al. Mezenkhimnye stromal’nye kletki pupovinno-platsentarnogo proiskhozhdeniya sposobstvuyut ekspansii gemopoeticheskikh CD34+-kletok pupovinnoy krovi cheloveka in vitro [Mesenchymal stromal cells of umbilical-placental origin contribute to the expansion of hematopoietic of CD34 + cells of human umbilical cord blood in vitro]. Zhurnal NAMN Ukraїni – Journal of NAMS of Ukraine. 2012; 18(suppl.): 74-5 [in Russian]. |
|
53. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology. 2006; 6(2): 93-106. https://doi.org/10.1038/nri1779 PMid:16491134 |
|
54. Alakel N, Jing D, Muller K, et al. Direct contact with mesenchymal stromal cells affects migratory behavior and gene expression profile of CD133+ hematopoietic stem cells during ex vivo expansion. Exp Hematol. 2009; 37(4): 504-13. https://doi.org/10.1016/j.exphem.2008.12.005 PMid:19216019 |
|
55. Uchida N, He D, Friera AM, et al. The unexpectedG0 G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood. 1997; 89(2): 465-72. |
|
56. Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta. 2002; 1592(3): 313-21. https://doi.org/10.1016/S0167-4889(02)00324-5 |
|
57. Jing D, Fonseca AV, Alakel N, et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells–modeling the niche compartments in vitro. Haematologica. 2010; 95(4): 542-50.https://doi.org/10.3324/haematol.2009.010736 PMid:20145267 PMCid:PMC2857183 |
|
58. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005; 435(7044): 969-73. https://doi.org/10.1038/nature03703 PMid:15959517 PMCid:PMC2570168 |
|
59. Nombela- C Arrieta, Pivarnik G, Winkel B, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013; 15(5): 533-43. https://doi.org/10.1038/ncb2730 PMid:23624405 PMCid:PMC4156024 |
|
60. Campbell F. Ultrastructural studies of transmural migration of blood cells in the bone marrow of rats, mice and guinea pigs. American Journal of Anatomy. 1972; 135(4): 521-36.https://doi.org/10.1002/aja.1001350406 PMid:4637868 |
|
61. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption Trends Mol Med. 2005; 11(2): 76–81. |
|
62. Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine. 2006; 12(6): 657–64.https://doi.org/10.1038/nm1417 PMid:16715089 |
|
63. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003; 425(6960): 836-41. https://doi.org/10.1038/nature02041 PMid:14574412 |
|
64. Nilsson SK, Debatis ME, Dooner MS, et al. Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J Histochem Cytochem. 1998; 46(3): 371-77.https://doi.org/10.1177/002215549804600311 PMid:9487119 |
|
65. Aubin JE, Liu F, Malaval L, et al. Osteoblast and chondroblast differentiation. Bone. 1995; 17(Suppl. 2): 77S–83S. |
|
66. Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998; 76(6): 899-910. https://doi.org/10.1139/o99-005 PMid:10392704 |
|
67. Cordeiro-Spinetti E, De-Mello W, Trindade LS, et al. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation. Front Cell Dev Biol. 2014; 2. Available: http://dx.doi.org/10.3389/fcell.2014.00007 https://doi.org/10.3389/fcell.2014.00007 |
|
68. Matrosova VY, Orlovskaya IA, Serobyan N, et al. Hyaluronic acid facilitates the recovery of hematopoiesis following 5-fluorouracil administration. Stem Cells. 2004; 22(4): 544-55.https://doi.org/10.1634/stemcells.22-4-544 PMid:15277700 |
|
69. Goldberg ED, Dygai AM, Zyuz’kov GN, et al. Mekhanizmy mobilizatsii mezenkhimal’nykh kletok-predshestvennikov granulotsitarnym koloniestimuliruyushchim faktorom i gialuronidazoy [Mechanisms of mobilization of mesenchymal precursor cell under the effect of granulocytic colony-stimulating factor and hyaluronidase]. Byulleten’ eksperimental’noy biologii i meditsiny – Bulletin of Experimental Biology and Medicine. 2007; 144(12): 652-56 [in Russian]. |
|
70. Lian JB, Stein GS, Aubin JE. Bone formation: maturation and functional activities of osteoblast lineage cells. American Society for Bone and Mineral Research. 2003; 20(11): 13-28. |
|
71. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000; 289(5484): 1501-04. https://doi.org/10.1126/science.289.5484.1501 PMid:10968779 |
|
72. Mackie EJ. Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol. 2003; 35(9): 1301-05. https://doi.org/10.1016/S1357-2725(03)00107-9 |
|
73. Dorheim MA, Sullivan M, Dandapani V, et al. Osteoblastic gene expression during adipose genesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Phys. 1993; 154(2): 317-28.https://doi.org/10.1002/jcp.1041540215 PMid:8425912 |
|
74. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994; 179(5): 1677-82.https://doi.org/10.1084/jem.179.5.1677 |
|
75. Taichman R, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood. 1996; 87(2): 518-24. |
|
76. Tachman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells. 1998; 16(1): 7-15. https://doi.org/10.1002/stem.160007 PMid:9474743 |
|
77. Taichman RS, Reilly MJ, Emerson SG. The Hematopoietic Microenvironment: Osteoblasts and The Hematopoietic Microenvironment. Hematology. 2000; 4(5): 421-26.https://doi.org/10.1080/10245332.1999.11746468 |
|
78. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003; 425(6960): 841–46. https://doi.org/10.1038/nature02040 PMid:14574413 |
|
79. Arai F, Hirao A, Ohmura M, et al. Tie2 Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche. Cell. 2004; 118(2): 149-61.https://doi.org/10.1016/j.cell.2004.07.004 PMid:15260986 |
|
80. Visnjic D, Kalajzic Z, Rowe DW, et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004; 103(9): 3258-64. https://doi.org/10.1182/blood-2003-11-4011 PMid:14726388 |
|
81. Bowers M, Zhang B, Ho Y, et al. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. Blood. 2015; 125(17): 2678-88.https://doi.org/10.1182/blood-2014-06-582924 PMid:25742698 PMCid:PMC4408292 |
|
82. Osawa M, Hanada K, Hamada H, et al. Long-term lymphohematopoietic reconstitution by a single CD34-low negative hematopoietic stem cell. Science. 1996; 273(5272):242-45.https://doi.org/10.1126/science.273.5272.242 PMid:8662508 |
|
83. Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hematopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001; 97(8): 2293-99.https://doi.org/10.1182/blood.V97.8.2293 PMid:11290590 |
|
84. Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004; 18(22): 2747-63.https://doi.org/10.1101/gad.313104 PMid:15545632 PMCid:PMC528895 |
|
85. Xie Y, Yin T, Wiegraebe W, et al. Detection of functional haematopoietic stem cell niche using real time imaging. Nature. 2009; 457(7225): 97-101. https://doi.org/10.1038/nature07639 PMid:19052548 |
|
86. Zhu J, Garrett R, Jung Y, et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 2007; 109(9): 3706-12. https://doi.org/10.1182/blood-2006-08-041384 PMid:17227831 |
|
87. Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipoosteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010; 33(3): 387-99.https://doi.org/10.1016/j.immuni.2010.08.017 PMid:20850355 |
|
88. Li JY, Adams J, Calvi LM, et al. PTH expands short-term murine hematopoietic stem cells through T cells. Blood. 2012; 120(22): 4352-62. https://doi.org/10.1182/blood-2012-06-438531 PMid:22955916 PMCid:PMC3507144 |
|
89. Lymperi S, Horwood N, Marley S, et al. Strontium can increase some osteoblasts without increasing hematopoietic stem cells Blood. 2008; 111(3): 1173-81. |
|
90. Ma YD, Park C, Zhao H, et al. Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood. 2009; 114(20): 4402-10. https://doi.org/10.1182/blood-2008-12-196311 PMid:19759358 PMCid:PMC2777125 |
|
91. Kiel MJ, Radice GL, Morrison SJ. Lack of Evidence that Hematopoietic Stem Cells Depend on N-Cadherin-Mediated Adhesion to Osteoblasts for Their Maintenance. Cell Stem Cell. 2007; 1(2): 204-17. https://doi.org/10.1016/j.stem.2007.06.001 PMid:18371351 |
|
92. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013; 495(7440): 231-5. https://doi.org/10.1038/nature11885 PMid:23434755 PMCid:PMC3600153 |
|
93. Greenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013; 495(7440): 227-30.https://doi.org/10.1038/nature11926 PMid:23434756 PMCid:PMC3600148 |
|
94. Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012; 481(7382): 457-62. https://doi.org/10.1038/nature10783 PMid:22281595 PMCid:PMC3270376 |
|
95. Doulatov S, Notta F, Laurenti E, et al. Hematopoiesis: a human perspective. Cell Stem Cell. 2012; 10(2): 120-36. https://doi.org/10.1016/j.stem.2012.01.006 PMid:22305562 |
|
96. Nolan DJ, Ginsberg M, Israely E, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013; 26(2): 204-19.https://doi.org/10.1016/j.devcel.2013.06.017 PMid:23871589 PMCid:PMC3873200 |
|
97. Nakamura Y, Arai F, Iwasaki H, et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood. 2010; 116(9): 1422-32.https://doi.org/10.1182/blood-2009-08-239194 PMid:20472830 |
|
98. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA.1994; 91(6): 2305-09. https://doi.org/10.1073/pnas.91.6.2305 PMid:8134392 PMCid:PMC43359 |
|
99. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF SDF-1. Nature. 1996; 382(6592): 635-38.https://doi.org/10.1038/382635a0 PMid:8757135 |
|
100. Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998; 393(6685): 591-94. https://doi.org/10.1038/31261 PMid:9634237 |
|
101. Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998; 393(6685): 595-99.https://doi.org/10.1038/31269 PMid:9634238 |
|
102. Ara T, Itoi M, Kawabata K, et al. A role of CXC chemokine ligand 12 stromal cell-derived factor-1 pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol. 2003; 170(9): 4649-55. https://doi.org/10.4049/jimmunol.170.9.4649 PMid:12707343 |
|
103. Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity. 2004; 20(6):707-18.https://doi.org/10.1016/j.immuni.2004.05.001 PMid:15189736 |
|
104. Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol. 2006; 6(2): 107-16. https://doi.org/10.1038/nri1780 PMid:16491135 |
|
105. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006; 25(6): 977-88.https://doi.org/10.1016/j.immuni.2006.10.016 PMid:17174120 |
|
106. Kohara H, Omatsu Y, Sugiyama T, et al. Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood. 2007; 110(13): 4153-60. https://doi.org/10.1182/blood-2007-04-084210 PMid:17827391 |
|
107. Noda M, Omatsu Y, Sugiyama T, et al. CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood. 2010; 117(2): 451-58. https://doi.org/10.1182/blood-2010-04-277897 PMid:20944068 |
|
108. Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19(2): 329-44.https://doi.org/10.1016/j.devcel.2010.07.010 PMid:20708594 PMCid:PMC3540406 |
|
109. Liu Y, Strecker S, Wang L, et al. Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS ONE. 2013; 8(8): e71318. |
|
110. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger–containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108(1): 17-29.https://doi.org/10.1016/S0092-8674(01)00622-5 |
|
111. Jung Y, Wang J, Schneider A, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone. 2006; 38(4): 497-508.https://doi.org/10.1016/j.bone.2005.10.003 PMid:16337237 |
|
112. Kiel MJ, Acar M, Radice GL, et al. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell. 2009; 4(2): 170-79.https://doi.org/10.1016/j.stem.2008.10.005 PMid:19119091 PMCid:PMC2681089 |
|
113. Greenbaum AM, Revollo LD, Woloszynek JR, et al. N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood. 2012; 120(2): 295-302.https://doi.org/10.1182/blood-2011-09-377457 PMid:22323481 PMCid:PMC3398761 |
|
114. Bromberg O, Frisch BJ, Weber JM, et al. Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood. 2012; 120(2): 303-13. https://doi.org/10.1182/blood-2011-09-377853 PMid:22596259 PMCid:PMC3398755 |
|
115. Hosokawa K, Arai F, Yoshihara H, et al. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell. 2010; 6(3): 194-98. https://doi.org/10.1016/j.stem.2009.04.013 PMid:20207221 |
|
116. Hosokawa K, Arai F, Yoshihara H, et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood. 2010; 116(4): 554-63. https://doi.org/10.1182/blood-2009-05-224857 PMid:20427705 |
|
117. Stier S, Ko Y, Forkert R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005; 201(11): 1781-91.https://doi.org/10.1084/jem.20041992 PMid:15928197 PMCid:PMC2213260 |
|
118. Qian H, Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007; 1(6): 671-84.https://doi.org/10.1016/j.stem.2007.10.008 PMid:18371408 |
|
119. Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007; 1(6): 685-97.https://doi.org/10.1016/j.stem.2007.10.020 PMid:18371409 |
|
120. Zhou BO, Ding L, Morrison SJ. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. Elife. 2015; 4. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411515/. |
|
121. Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006; 439(7076): 599-603.https://doi.org/10.1038/nature04247 PMid:16382241 |
|
122. Mancini SJ, Mantei N, Dumortier A, et al. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood. 2005; 105(6): 2340-42.https://doi.org/10.1182/blood-2004-08-3207 PMid:15550486 |
|
123. Nilsson SK, Johnston HM, Whitty GA, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005; 106(4): 1232-39. https://doi.org/10.1182/blood-2004-11-4422 PMid:15845900 |
|
124. Adams GB, Scadden DT. The hematopoietic stem cells in its place. Nat Immunol. 2006; 7: 333-37. https://doi.org/10.1038/ni1331 PMid:16550195 |
|
125. Yin T, Li L. The stem cell niches in bone. Journal of Clinical Investigation. 2006; 116(5): 1195-201. https://doi.org/10.1172/JCI28568 PMid:16670760 PMCid:PMC1451221 |
|
126. Fleming HE, Janzen V, Lo Celso C, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008; 2(2): 274-83.https://doi.org/10.1016/j.stem.2008.01.003 PMid:18371452 PMCid:PMC2991120 |
|
127. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008; 8(4): 290-301. https://doi.org/10.1038/nri2279 PMid:18323850 |
|
128. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients throughHIF-1 induction of SDF-1. Nat Med. 2004; 10(8): 858-64.https://doi.org/10.1038/nm1075 PMid:15235597 |
|
129. Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005; 201(8): 1307-18. https://doi.org/10.1084/jem.20041385 PMid:15837815 PMCid:PMC2213145 |
|
130. Karpova D, Bonig H. Concise Review: CXCR4 CXCL12 Signaling in Immature Hematopoiesis – Lessons From Pharmacological and Genetic Models. Stem Cells. 2015; 33(8):2391-99.https://doi.org/10.1002/stem.2054 PMid:25966814 |
|
131. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005; 106(6): 1901-1910. https://doi.org/10.1182/blood-2005-04-1417 PMid:15890683 |
|
132. Askenasy N, Farkas DL. In vivo imaging studies of the effect of recipient conditioning, donor cell phenotype and antigen disparity on homing of haematopoietic cells to the bone marrow. British Journal of Haematology. 2003; 120(3): 505-15. https://doi.org/10.1046/j.1365-2141.2003.04114.x PMid:12580970 |
|
133. Wang JC, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood. 1997; 89(11)3919-24. |
|
134. De Barros AP, Takiya CM, Garzoni LR, et al. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One. 2010; 5. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816998/. |
|
135. Kiel MJ, He S, Ashkenazi R, et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature. 2007; 449(7159): 238-42. https://doi.org/10.1038/nature06115 PMid:17728714 PMCid:PMC2633872 |
|
136. McCabe A, Zhang Y, Thai V, et al. Macrophage-Lineage Cells Negatively Regulate the Hematopoietic Stem Cell Pool in Response to Interferon Gamma at Steady State and During Infection.Stem Cells. 2015; 33(7): 2294-2305. https://doi.org/10.1002/stem.2040 PMid:25880153 PMCid:PMC4693298 |
|
137. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996; 183(4): 1797-1806.https://doi.org/10.1084/jem.183.4.1797 PMid:8666936 |
|
138. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1 ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001; 7(9): 1028-34. https://doi.org/10.1038/nm0901-1028 PMid:11533706 |
|
139. Huttmann A, Liu SL, Boyd AW, et al. Functional heterogeneity within rhodamine123(lo) Hoechst33342(losp) primitive hematopoietic stem cells revealed by pyroninY. Exp Hematol. 2001; 29(9): 09-1116. https://doi.org/10.1016/S0301-472X(01)00684-1 |
|
140. Wilson A, Oser GM, Jaworski M, et al. Dormant and self-renewing hematopoietic stem cells and their niches. Ann NY Acad Sci. 2007; 1106(1): 64-75. https://doi.org/10.1196/annals.1392.021 PMid:17442778 |
|
141. Haug JS, He XC, Grindley JC, et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell. 2008; 2(4): 367-79.https://doi.org/10.1016/j.stem.2008.01.017 PMid:18397756 |
|
142. Cao J, Zhang L, Wan Y, et al. Ablation of Wnt less in endosteal niches impairs lymphopoiesis rather than HSCs maintenance. Eur J Immunol. 2015; 45(9): 2650-60.https://doi.org/10.1002/eji.201445405 PMid:26173091 |
|
143. Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013; 502(7473): 637-43. https://doi.org/10.1038/nature12612 PMid:24107994 PMCid:PMC3821873 |
|
144. Hackney JA, Charbord P, Brunk BP, et al. A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci USA. 2002; 99(20): 13061-66. https://doi.org/10.1073/pnas.192124499 PMid:12226475 PMCid:PMC130586 |
|
145. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014; 20(8): 833-46. https://doi.org/10.1038/nm.3647 PMid:25100529 PMCid:PMC4459580 |
|
146. Mehta A, Zhao JL, Sinha N, et al. The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. Immunity. 2015; 42(6): 1021-32. https://doi.org/10.1016/j.immuni.2015.05.017 PMid:26084022 PMCid:PMC4471877 |
|
147. Lo Celso C, Fleming HE, Wu JW, et al. Live animal tracking of individual haematopoietic stem progenitor cells in their niche. Nature. 2009; 457(7225): 92-6. https://doi.org/10.1038/nature07434 PMid:19052546 PMCid:PMC2820276 |
|
148. Hooper AT, Butler JM, Nolan DJ, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009; 4(3): 263-74. https://doi.org/10.1016/j.stem.2009.01.006 PMid:19265665 PMCid:PMC3228275 |
|
149. Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006; 124(2): 407-21.https://doi.org/10.1016/j.cell.2005.10.041 PMid:16439213 |
|
150. Mendez- S Ferrer, Lucas D, Battista M, et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008; 452(7186): 442-47. https://doi.org/10.1038/nature06685 PMid:18256599 |
|
151. Lucas D, Scheiermann C, Chow A, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013; 19(6): 695-703. https://doi.org/10.1038/nm.3155 PMid:23644514 PMCid:PMC3964478 |
|
152. Mendez-Ferrer S, Battista M, Frenette PS. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann NY Acad Sci. 2010; 1192(1): 139-44.https://doi.org/10.1111/j.1749-6632.2010.05390.x PMid:20392229 PMCid:PMC4106131 |
|
153. Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466(7308): 829-34. https://doi.org/10.1038/nature09262 PMid:20703299 PMCid:PMC3146551 |
|
154. Park D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012; 10(3): 259-72.https://doi.org/10.1016/j.stem.2012.02.003 PMid:22385654 PMCid:PMC3652251 |
|
155. Joseph C, Quach JM, Walkley CR, et al. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell. 2013; 13(5): 520-33. https://doi.org/10.1016/j.stem.2013.10.010 PMid:24209759 |
|
156. Pinho S, Lacombe J, Hanoun M, et al. PDGFR? and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013; 210(7): 1351-67. https://doi.org/10.1084/jem.20122252 PMid:23776077 PMCid:PMC3698522 |
|
157. Mizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014; 29(3): 340-49.https://doi.org/10.1016/j.devcel.2014.03.013 PMid:24823377 PMCid:PMC4051418 |
|
158. Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15(2): 154-68.https://doi.org/10.1016/j.stem.2014.06.008 PMid:24953181 PMCid:PMC4127103 |
|
159. Saito M, Iwawaki T, Taya C, et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol. 2001; 19(8): 746-50. https://doi.org/10.1038/90795 PMid:11479567 |
|
160. Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131(2): 324-36.https://doi.org/10.1016/j.cell.2007.08.025 PMid:17956733 |
|
161. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990; 60(4): 585-95. https://doi.org/10.1016/0092-8674(90)90662-X |
|
162. Day K, Shefer G, Richardson JB, et al. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol. 2007; 304(1): 246-59.https://doi.org/10.1016/j.ydbio.2006.12.026 PMid:17239845 PMCid:PMC1888564 |
|
163. Kfoury Y, Scadden DT. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell. 2015; 16(3): 239-53. https://doi.org/10.1016/j.stem.2015.02.019 PMid:25748931 |
|
164. Lenertz LY, Baughman CJ, Waldschmidt NV, et al. Control of bone development by P2X and P2Y receptors expressed in mesenchymal and hematopoietic cells. Gene. 2015; 570(1): 1-7.https://doi.org/10.1016/j.gene.2015.06.031 PMid:26079571 |
|
165. Ziegler P, Boettcher S, Takizawa H, et al. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Ann Hematol. 2016; 95(2): 173-78.https://doi.org/10.1007/s00277-015-2550-5 PMid:26555286 |
|
166. Chan CK, Chen CC, Luppen C. A, et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 2009; 457(7228): 490-94. https://doi.org/10.1038/nature07547 PMid:19078959 PMCid:PMC2648141 |
|
167. Morikawa S, Mabuchi Y, Kubota Y, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009; 206(11): 2483-96. https://doi.org/10.1084/jem.20091046 PMid:19841085 PMCid:PMC2768869 |
|
168. Wagner W, Roderburg C, Wein F, et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells. 2007; 25(10): 2638-47. https://doi.org/10.1634/stemcells.2007-0280 PMid:17615262 |
|
169. De Bruyn PP, Breen PC, Thomas TB. The microcirculation of the bone marrow. Anat Rec. 1970; 168(1): 55-68. https://doi.org/10.1002/ar.1091680105 PMid:4918907 |
|
170. Acar M, Kocherlakota KS, Murphy MM, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015; 526(7571): 126-30.https://doi.org/10.1038/nature15250 PMid:26416744 PMCid:PMC4850557 |
|
171. Chen JY, Miyanishi M, Wang SK, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016; 530: 223-27https://doi.org/10.1038/nature16943 PMid:26863982 PMCid:PMC4854608 |
|
172. Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997; 386(6624): 488-93. https://doi.org/10.1038/386488a0 PMid:9087406 |
|
173. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995; 376(6535): 62-6. https://doi.org/10.1038/376062a0 PMid:7596435 |
|
174. Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010; 12(11): 1046-56 https://doi.org/10.1038/ncb2108 PMid:20972423 PMCid:PMC2972406 |
|
175. Himburg HA, Harris JR, Ito T, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Reports. 2012; 2(4): 964-75.https://doi.org/10.1016/j.celrep.2012.09.002 PMid:23084748 PMCid:PMC3696585 |
|
176. Doan PL, Himburg HA, Helms K, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013; 19(3): 295-304. https://doi.org/10.1038/nm.3070 PMid:23377280 PMCid:PMC3594347 |
|
177. Butler JM, Nolan DJ, Vertes EL, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010; 6(3): 251-64.https://doi.org/10.1016/j.stem.2010.02.001 PMid:20207228 PMCid:PMC2866527 |
|
178. Poulos MG, Guo P, Kofler NM, et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Reports. 2013; 4(5): 1022–34.https://doi.org/10.1016/j.celrep.2013.07.048 PMid:24012753 PMCid:PMC3805263 |
|
179. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014; 507(7492): 323-28. https://doi.org/10.1038/nature13145 PMid:24646994 PMCid:PMC4943525 |
|
180. Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014; 507(7492): 376-80. https://doi.org/10.1038/nature13146 PMid:24647000 PMCid:PMC4943529 |
|
181. Rafii S. Shapiro F, Pettengell R, et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood. 1995; 86(9): 3353-63. |
|
182. 182. Chute JP, Saini AA, Chute DJ, et al. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood. 2002; 100(13): 4433-39.https://doi.org/10.1182/blood-2002-04-1238 PMid:12393435 |
|
183. Li B, Bailey AS, Jiang S, et al. Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Res. 2010; 4(1): 17-24. https://doi.org/10.1016/j.scr.2009.08.001 PMid:19720572 PMCid:PMC2938793 |
|
184. Winkler IG, Pettit AR, Raggatt LJ, et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSCs niches and bone formation. Leukemia. 2012; 26(7): 1594-601. https://doi.org/10.1038/leu.2012.17 PMid:22266913 |
|
185. Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011; 9(4): 298-310. https://doi.org/10.1016/j.stem.2011.09.010 PMid:21982230 |
|
186. Nikolsky I, Serebrovska TV. Role of hypoxia in stem cell development and functioning Фізіологічний журнал. 2009; 55(4): 116-30. |
|
187. Serebrovska T, Nikolsky I, Ishchuk V. Human Adaptation to Intermittent Hypoxia: Effects on Hematopoietic Stem Cells and Immune Function. Adaptation Biology and Medicine. 2011; 6: 181-91. |
|
188. Nombela-Arrieta C, Silberstein LE. The science behind the hypoxic niche of hematopoietic stem and progenitors. Hematology Am Soc Hematol Educ Program. 2014; 2014(1): 542-47.https://doi.org/10.1182/asheducation-2014.1.542 |
|
189. Cipolleschi MG, Dello Sbarba PP, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993; 82(7): 2031-37. |
|
190. Ivanovic Z, Dello Sbarba P, Trimoreau F, et al. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion. 2000; 40(12): 1482-88.https://doi.org/10.1046/j.1537-2995.2000.40121482.x PMid:11134568 |
|
191. Danet GH, Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003; 112(1): 126-35. https://doi.org/10.1172/JCI17669 PMid:12840067 PMCid:PMC162287 |
|
192. Chow DC, Wenning LA, Miller WM, et al. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J. 2001; 81(2): 685-96.https://doi.org/10.1016/S0006-3495(01)75733-5 |
|
193. Durand RE, Chaplin DJ, Olive PL. Cell sorting with Hoechst or carbocyanine dyes as perfusion probes in spheroids and tumors. Methods Cell Biol. 1990; 33: 509-18. https://doi.org/10.1016/S0091-679X(08)60550-6 |
|
194. Bernsen HJ, Rijken PF, Peters H, et al. Hypoxia in a human intracerebral glioma model. J Neurosurg. 2000; 93(3): 449-54. https://doi.org/10.3171/jns.2000.93.3.0449 PMid:10969943 |
|
195. Van Laarhoven HW, Bussink J, Lok J, et al. Effects of nicotinamide and carbogen in different murine colon carcinomas: immunohistochemical analysis of vascular architecture and microenvironmental parameters. Int J Radiat Oncol Biol Phys. 2004; 60(1): 310-21. https://doi.org/10.1016/j.ijrobp.2004.05.014 PMid:15337570 |
|
196. Olive PL, Durand RE, Raleigh JA, et al. Comparison between the comet assay and pimonidazole binding for measuring tumour hypoxia. Br J Cancer. 2000; 83(11): 1525-31.https://doi.org/10.1054/bjoc.2000.1489 PMid:11076663 PMCid:PMC2363410 |
|
197. Olive PL, Luo CM, Banath JP. Local hypoxia is produced at sites of intratumour injection. Br J Cancer. 2002; 86(3): 429-35. https://doi.org/10.1038/sj.bjc.6600059 PMid:11875711 PMCid:PMC2375199 |
|
198. Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA. 2007; 104(13): 5431-36.https://doi.org/10.1073/pnas.0701152104 PMid:17374716 PMCid:PMC1838452 |
|
199. Hale LP, Braun RD, Gwinn WM, et al. Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am J Physiol Heart Circ Physiol. 2002; 282(4): H1467-77. |
|
200. Winkler IG, Barbier V, Wadley R, et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct non perfused niches. Blood. 2010; 116(3): 375-85. https://doi.org/10.1182/blood-2009-07-233437 PMid:20393133 |
|
201. Parmar K, Sauk-Schubert C, Burdick D, et al. Sca+CD34- murine side population cells are highly enriched for primitive stem cells Exp Hematol. 2003; 31(3): 244-50. |
|
202. Raleigh JA, Dewhirst MW, Thrall DE. Measuring Tumor Hypoxia. Semin Radiat Oncol. 1996; 6(1): 37-45. https://doi.org/10.1016/S1053-4296(96)80034-8 |
|
203. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997; 3(12): 1337-45. https://doi.org/10.1038/nm1297-1337 PMid:9396603 |
|
204. Matsuzaki Y, Kinjo K, Mulligan RC, et al. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity. 2004; 20(1): 87-93. https://doi.org/10.1016/S1074-7613(03)00354-6 |
|
205. Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer. 2004; 4(6): 437-47. https://doi.org/10.1038/nrc1367 PMid:15170446 |
|
206. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007; 110(8): 3056-63.https://doi.org/10.1182/blood-2007-05-087759 PMid:17595331 PMCid:PMC2018677 |
|
207. Unwin RD, Smith DL, Blinco D, et al. Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood. 2006; 107(12): 4687-94.https://doi.org/10.1182/blood-2005-12-4995 PMid:16507774 |
|
208. Pearce DJ, Ridler CM, Simpson C, et al. Multiparameter analysis of murine bone marrow side population cells. Blood. 2004; 103(7): 2541-46. https://doi.org/10.1182/blood-2003-09-3281 PMid:14644998 |
|
209. Camargo FD, Chambers SM, Drew E, et al. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood. 2006; 107(2): 501-7. https://doi.org/10.1182/blood-2005-02-0655 PMid:16204316 PMCid:PMC1895609 |
|
210. Nishi H, Nakada T, Kyo S, et al. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol. 2004; 24(13): 6076-83. https://doi.org/10.1128/MCB.24.13.6076-6083.2004 PMid:15199161 PMCid:PMC480902 |
|
211. Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene. 2004; 23(20): 3708-15. https://doi.org/10.1038/sj.onc.1207460 PMid:15048086 |
|
212. Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006; 20(5): 557-70.https://doi.org/10.1101/gad.1399906 PMid:16510872 PMCid:PMC1410808 |
|
213. Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells Cell Stem Cell. 2010; 7(3): 391-402. |
|
214. Forristal CE, Winkler IG, Nowlan B, et al. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood. 2013; 121(5): 759-69. https://doi.org/10.1182/blood-2012-02-408419 PMid:23243286 |
|
215. Schajnovitz A, Itkin T, D’Uva G, et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat Immunol. 2011; 12(5): 391-98. https://doi.org/10.1038/ni.2017 PMid:21441933 |
|
216. Heinrich MC, Dooley DC, Freed AC, et al. Constitutive expression of steel factor gene by human stromal cells. Blood. 1993; 82(3): 771-83. |
|
217. Blair HC, Julian BA, Cao X, et al. Parathyroid hormone-regulated production of stem cell factor in human osteoblasts and osteoblast-like cells. Biochem Biophys Res Commun. 1999; 255(3): 778-84.https://doi.org/10.1006/bbrc.1999.0260 PMid:10049787 |
|
218. Kimura Y, Ding B, Imai N, et al. c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis. PLoS One. 2011; DOI: 10.1371 journal.pone.0026918 |
|
219. Blank U, Karlsson S. TGF-? signaling in the control of hematopoietic stem cells. Blood. 2015; 125(23): 3542-50. https://doi.org/10.1182/blood-2014-12-618090 PMid:25833962 |
|
220. Yamazaki S, Ema H, Karlsson G, et al. Non myelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011; 147(5): 1146-58.https://doi.org/10.1016/j.cell.2011.09.053 PMid:22118468 |
|
221. Challen GA, Boles NC, Chambers SM, et al. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF?1. Cell Stem Cell. 2010; 6(3): 265-78.https://doi.org/10.1016/j.stem.2010.02.002 PMid:20207229 PMCid:PMC2837284 |
|
222. Brenet F, Kermani P, Spektor R, et al. TGF? restores hematopoietic homeostasis after myelosuppressive chemotherapy. J Exp Med. 2013; 210(3): 623-39. https://doi.org/10.1084/jem.20121610 PMid:23440043 PMCid:PMC3600905 |
|
223. Miharada K, Karlsson G, Rehn M, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche- related factor through cell surface receptor GRP78. Cell Stem Cell. 2011; 9(4): 330-44.https://doi.org/10.1016/j.stem.2011.07.016 PMid:21982233 |
|
224. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001; 2(2): 172-80.https://doi.org/10.1038/84282 PMid:11175816 |
|
225. Pajcini KV, Speck NA, Pear WS. Notch signaling in mammalian hematopoietic stem cells. Leukemia. 2011; 25(10): 1525-32. https://doi.org/10.1038/leu.2011.127 PMid:21647159 |
|
226. Bigas A, Espinosa L. Hematopoietic stem cells: to be or Notch to be. Blood. 2012; 119(14): 3226-35. https://doi.org/10.1182/blood-2011-10-355826 PMid:22308291 |
|
227. Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002; 99(7): 2369-78.https://doi.org/10.1182/blood.V99.7.2369 PMid:11895769 |
|
228. Jacobsen S. Defining ‘stemness’: Notch and Wnt join forces? Nat. Immunol. 2005; 6(3): 234-36. https://doi.org/10.1038/ni0305-234 |
|
229. Lin MI, Price EN, Boatman S, et al. Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. Elife. 2015; 25. Available: http:.www.ncbi.nlm.nih.gov/pmc/articles/PMC4371382 |
|
230. Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005; 6(3): 314-22. https://doi.org/10.1038/ni1164 PMid:15665828 |
|
231. Maillard I, Koch U, Dumortier A, et al. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2008; 2(4): 356-66.https://doi.org/10.1016/j.stem.2008.02.011 PMid:18397755 PMCid:PMC3717373 |
|
232. Varnum-Finney B, Halasz LM, Sun M, et al. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J Clin Invest. 2011; 121(3): 1207-16.https://doi.org/10.1172/JCI43868 PMid:21285514 PMCid:PMC3049401 |
|
233. Oh P, Lobry C, Gao J, et al. In vivo mapping of notch pathway activity in normal and stress hematopoiesis Cell Stem Cell. 2013; 13(2): 190-204. |
|
234. Mercher T, Cornejo MG, Sears C, et al. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell. 2008; 3(3): 314-26.https://doi.org/10.1016/j.stem.2008.07.010 PMid:18786418 PMCid:PMC3970322 |
|
235. 235. Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009; 4(1): 27-36. https://doi.org/10.1016/j.stem.2008.12.004 PMid:19128790 PMCid:PMC2975490 |
|
236. Kabiri Z. Numata A, Kawasaki A, et al. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells. Blood. 2015; 126(9): 1086-94.https://doi.org/10.1182/blood-2014-09-598540 PMid:26089398 PMCid:PMC4598194 |
|
237. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003; 423(6938): 409-14. https://doi.org/10.1038/nature01593 PMid:12717450 |
|
238. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003; 423(6938): 448-52. https://doi.org/10.1038/nature01611 PMid:12717451 |
|
239. Luis TC, Weerkamp F, Naber BA, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009; 113(3): 546-54.https://doi.org/10.1182/blood-2008-06-163774 PMid:18832654 |
|
240. Nemeth MJ, Topol L, Anderson SM, et al. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA. 2007; 104(39): 15436-441.https://doi.org/10.1073/pnas.0704747104 PMid:17881570 PMCid:PMC1986571 |
|
241. Povinelli BJ, Nemeth MJ. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells. 2014; 32(1): 105-15. https://doi.org/10.1002/stem.1513 PMid:23939973 |
|
242. Abidin BM, Owusu KE, Heinonen KM. Frizzled-6 Regulates Hematopoietic Stem Progenitor Cell Survival and Self-Renewal. J Immunol. 2015; 195(5): 2168-76.https://doi.org/10.4049/jimmunol.1403213 PMid:26188064 |
|
243. Sugimura R, He XC, Venkatraman A, et al. Non canonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012; 150(2): 351-65. https://doi.org/10.1016/j.cell.2012.05.041 PMid:22817897 PMCid:PMC4492542 |
|
244. Luis TC, Naber BA, Roozen PP, et al. Canonical Wnt signaling regulates hematopoiesis in a dosage dependent fashion. Cell Stem Cell. 2011; 9(4): 345-56. https://doi.org/10.1016/j.stem.2011.07.017 PMid:21982234 |
|
245. Оrlovskaya IA, Toporkova LB. Geneticheskie programmy regulyatsii samopodderzhaniya gemopoeticheskikh stvolovykh kletok [Genetic programs of regulation of self-maintenance of hematopoietic stem cells]. Rossiyskiy immunologicheskiy zhurnal – Russian Journal of Immunology. 2008; 2(11)(2): 114 [in Russian]. |
|
246. Toporkova LB, Оrlovskaya IA, Khaldoyanidi SK. Mekhanizmy regulyatsii samopodderzhaniya gemopoeticheskoy stvolovoy kletki [Mechanisms of regulation of self- maintenance of hematopoietic stem cells]. Uspekhi sovremennoy biologii – Biology Bulletin Reviews. 2008; 128(5): 458-66 [in Russian]. |
|
247. Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014; 20(11): 1315-20. https://doi.org/10.1038/nm.3707 PMid:25326802 PMCid:PMC4258871 |
|
248. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014; 20(11): 1321-26.https://doi.org/10.1038/nm.3706 PMid:25326798 |
|
249. Chow A, Huggins M, Ahmed J, et al. CD169? macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013; 19(4): 429-36. https://doi.org/10.1038/nm.3057 PMid:23502962 PMCid:PMC3983996 |
|
250. Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and ?-thalassemia. Nat Med. 2013; 19(4): 437-45. https://doi.org/10.1038/nm.3126 PMid:23502961 PMCid:PMC3618568 |
|
251. Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011; 208(2): 261-71. https://doi.org/10.1084/jem.20101688 PMid:21282381 PMCid:PMC3039855 |
|
252. Christopher MJ, Rao M, Liu F, et al. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011; 208(2): 251-60. https://doi.org/10.1084/jem.20101700 PMid:21282380 PMCid:PMC3039862 |
|
253. Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSCs) niches and their depletion mobilizes HSCs. Blood. 2010; 116(23): 4815-28.https://doi.org/10.1182/blood-2009-11-253534 PMid:20713966 |
|
254. Lucas D, Bruns I, Battista M, et al. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood. 2012; 119(17): 3962-65.https://doi.org/10.1182/blood-2011-07-367102 PMid:22422821 PMCid:PMC3350363 |
|
255. Dutta P, Hoyer FF, Grigoryeva LS, et al. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J Exp Med. 2015; 212(4): 497-512. https://doi.org/10.1084/jem.20141642 PMid:25800955 PMCid:PMC4387283 |
|
256. Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009; 460(7252): 259-63. https://doi.org/10.1038/nature08099 PMid:19516257 PMCid:PMC2831539 |
|
257. Miyamoto K, Yoshida S, Kawasumi M, et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med. 2011; 208(11): 2175-81.https://doi.org/10.1084/jem.20101890 PMid:22006978 PMCid:PMC3201203 |
|
258. Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011; 474(7350): 216-19.https://doi.org/10.1038/nature10160 PMid:21654805 PMCid:PMC3725645 |
|
259. Istvanffy R, Kroger M, Eckl C, et al. Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells. Blood. 2011; 118(10): 2712-22. https://doi.org/10.1182/blood-2010-05-287235 PMid:21791434 |
|
260. Ghiaur G, Yegnasubramanian S, Perkins B, et al. Regulation of human hematopoietic stem cell self-renewal by the microenvironment’s control of retinoic acid signaling. Proc Natl Acad Sci USA. 2013; 110(40): 16121-126. https://doi.org/10.1073/pnas.1305937110 PMid:24043786 PMCid:PMC3791732 |
|
261. Spoorendonk KM, Peterson-Maduro J, Renn J, et al. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development. 2008; 135(22): 3765-74.https://doi.org/10.1242/dev.024034 PMid:18927155 |
|