Effect of the bone marrow multipotent mesenchimal stromal cells to the neural tissue after ischemic injury in vitro

Home/2014, Vol. 2, No. 1/Effect of the bone marrow multipotent mesenchimal stromal cells to the neural tissue after ischemic injury in vitro

Cell and Organ Transplantology. 2014; 2(1):74-78.
DOI: 10.22494/COT.V2I1.38

Effect of the bone marrow multipotent mesenchimal stromal cells to the neural tissue after ischemic injury in vitro

Rybachuk О. А.1,2,3, Кyryk V. М.3, Poberezhny P. A.3, Butenko G. M.3, Skibo G. G.1,2,3, Pivneva Т. А.1,2,3
1BogomoletzInstitute of Physiology NAS Ukraine, Кyiv, Ukraine
2State Key Laboratory, Кyiv, Ukraine
3State Institute of Genetic and Regenerative Medicine NAMS Ukraine, Kyiv, Ukraine

Abstract
Stem cells application in neural system injuries is an actual and prospective scientific field of modern regenerative medicine. In recent years much attention has been paid for study of regenerative effects of multipotent mesenchymal stromal cells (MMSCs) from different sources on injured tissues.The aim of our study was to determine the level of tissue damage in hippocampus after in vitro model of ischemia and to investigate the effect of bone marrow MMSСs in non-contact co-culture with ischemic neural tissue. The ischemic injury of neural tissue in vitro was modeling in organotypic hippocampal slice culture (OHCs) by oxygen-glucose deprivation (OGD).
Immunohistochemical analysis after 24 hours of BM-MMSCs co-cultivation with OHCs after ischemia showed a significant reduction of caspase-3-positive dead neural cells, as compared to those in ischemic damage without BM-MMSCs co-cultivation, and reducing of glial cells activation. After co-cultivation of OHCs after OGD with BM-MMSCs there remained cytoarchitectonics of the neural tissue.Analyzing of our data, the neuroprotective effects of BM-MMSCs in non-contact co-cultivation with ischemic hippocampal organotypic slice culture is shown.

Keywords: multipotent mesenchymal stromal cells, hippocampal organotypic slice culture, oxygen-glucose deprivation, co-cultivation, immunohistochemical staining

Full Text PDF

1. Dirnagl U, Iadecola C, Moskowitz M. Pathobiology of ischemic stroke: an integrated view. Trends Neurosci. 1999;22:391-397.
https://doi.org/10.1016/S0166-2236(99)01401-0
2. Kristian T, Siesjo B. Changes in ionic fluxes during cerebral ischemia. Int. Rev. Neurobiol. 1997;40:27-45.
https://doi.org/10.1016/S0074-7742(08)60714-X
3. Dunnett SB, Rosser AE. Clinical translation of cell transplantation in the brain.Curr Opin Organ Transplant. 2011;16(6):632-639.
https://doi.org/10.1097/MOT.0b013e32834c2356
PMid:21926621
4. Miller RH, Bai L. Translating stem cell therapies to the clinic. Neurosci Lett. 2012;519(2):87-92.
https://doi.org/10.1016/j.neulet.2012.01.043
PMid:22306614
5. Mizusawa H. Brain ischemia – regenerative therapy using human neural stem cells. Rinsho Shinkeigaku. 2003;43(11):832-833.
PMid:15152478
6. Secco M, Zucconi E, Vieira NM, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2008;26(2):146-150.
https://doi.org/10.1634/stemcells.2007-0381
PMid:17932423
7. Silva L, Arnold M. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(3):2287-2299.
8. Qiao C, Xu W, Zhu W, et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol. Int. 2008; 32(1):8-15.
https://doi.org/10.1016/j.cellbi.2007.08.002
PMid:17904875
9. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004; 22(7):1330-1337.
https://doi.org/10.1634/stemcells.2004-0013
PMid:15579650
10. Petrenko AY, Grishchenko VI. Transplantacija stvolovyh kletok – terapija HHI veka. Harakteristika i svojstva stvolovyh kletok [Transplantation of stem cells – XXI century therapy. Characteristic and properties of stem cells]. Problemy Kriobiologii – Problems of Cryobiology, 2001;16(2):3-12. (in Russian).
11. Zozulya YA, Lisyany NI. Nejrogennaja differencirovka stvolovyh kletok [The neurogenetic differentiation of stem cells]. Kiev, Jekspress poligraf, 2005. 364 p.
12. Zubov DO, Oksymets VM. Osteoimunitet ta kul’tyvovani mezenhimal’ni stovburovi klityny [Osteoimmunity and the cultivated mesenchymal stem cells]. Problemy ekologii’ ta ohorony pryrody tehnogennogo regionu: mizhvid. zb. nauk. pr. – Ecology and Environment of the anthropogenic region, 2008;8:324-331.
13. Gimble JM, Guilak F, Nuttall ME, et al. In vitro differentiation potential of mesenchymal stem cells. Transfus. Med. Hemother. 2008;35(3):228-238.
https://doi.org/10.1159/000124281
PMid:21547120 PMCid:PMC3083290
14. Repin VS. Jembrional’naja stvolovaja kletka (ot fundamental’noj biologii k medicine). [Embryonic stem cell (from fundamental biology to medicine)]. Uspehi fiziol. nauk – Success of Physiological Sciences, 2001;32(1):3-19.
16. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. Jornal of Neuroscience Methods. 1997;37(2):173-182.
https://doi.org/10.1016/0165-0270(91)90128-M
17. Harting MT, Jimenez F, Cox CS. Isolation of Mesenchymal Stem Cells (MSCs) from Green Fluorescent Protein Positive (GFP+) Transgenic Rodents: The Grass Is Not Always Green(er). Stem cells and development. 2009;18(1):127-135.
https://doi.org/10.1089/scd.2008.0046
PMid:18518666 PMCid:PMC3189721
18. Ooi YY, Ramasamy R, Vidyadaran S. Mouse bone marrow mesenchymal stem cells acquire CD45CD106+ immunophenotype only at later passages. Med J Malaysia. 2008;63(suppl A):65-66.
PMid:19024986
19. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement.Cytotherapy. 2006;8(4):315-317.
https://doi.org/10.1080/14653240600855905
PMid:16923606
20. Daviaud N, Garbayo E, Schiller PC, et al. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol. 2013;248:429-440.
https://doi.org/10.1016/j.expneurol.2013.07.012
PMid:23899655
21. Vinogradova O.S. Gippokamp i pamjat’. [Gippokamp and memory]. Moscow, Nauka, 1975. 267 p.
22. Gambaryan L.S., Kowal I.N. Gippokamp. Fiziologija i morfologija [Gippokamp. Physiology and morphology]. Yerevan, Academy of Sciences Armenian Soviet Socialist Republic, 1973. 104 p.
PMid:4781786
23. Peeters C, Hoelen D, Groenendaal F, et al. Deferoxamine, allopurinol and oxypurinol are not neuroprotective after oxygen/glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res. 2003;963(12):72-80.
https://doi.org/10.1016/S0006-8993(02)03843-X
24. Kirino T, Sano K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 1984;62:201-208.
https://doi.org/10.1007/BF00691853
PMid:6695554
25. Winkelmann ER, Charcansky A, FaccioniHeuser MC. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. Anat. Embryol. (Berl). 2006;211(5):423-434.
https://doi.org/10.1007/s00429-006-0095-z
PMid:16673115
26. Kettenmann H., Ransom B.R. Neuroglia. Edited by– 2nd ed. Oxford. University Press, 2005. 601p.
27. Bahr BA. Longterm hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J. Neurosci. Research. 1995;42(3):294-305.
https://doi.org/10.1002/jnr.490420303
PMid:8583497
28. Laake J, Haug FM, Wieloch T, Ottersen O. A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Research Protocols. 1999;4(2):173-184.
https://doi.org/10.1016/S1385-299X(99)00021-5
29. Yuan J, Yankner BY. Apoptosis in the nervous system. Nature. 2000;407:802-809.
https://doi.org/10.1038/35037739
PMid:11048732
30. Zeng YS, Xu ZC. Coexistence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia . Neurosci Res. 2000;37:113-125.
https://doi.org/10.1016/S0168-0102(00)00107-3
31. Wagner D, Scheibe J, Glocke I, Weise G, Deten A, Boltze J, Kranz A. Objectbased analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol Exp (Wars). 2013;73(1):79-87.
32. Sukumari Ramesh S, Alleyne CH Jr, Dhandapani KM. Astrocytespecific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J. Neurotrauma. 2012;29(18):2798-804.
https://doi.org/10.1089/neu.2011.2243
PMid:22862734 PMCid:PMC3521135
33. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 2003;13(1):127-132.
https://doi.org/10.1016/S0959-4388(03)00017-5
34. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429-441.
https://doi.org/10.1016/S0092-8674(02)00862-0
35. Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. Cell transplantation for stroke. Ann Neurol. 2002;52(3):266-275.
https://doi.org/10.1002/ana.60000
PMid:12205638

Rybachuk ОА, Кyryk VМ, Poberezhny PA, Butenko GM, Skibo GG, Pivneva ТА. Еffect of the bone marrow multipotent mesenchimal stromal cells to the neural tissue after ischemic injury in vitro. Cell and Organ Transplantology. 2014; 2(1):74-78. doi: 10.22494/COT.V2I1.38

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.