Transplantation of neural progenitor cells stimulates endogenous neurogenesis in mice after ischemic stroke

Home/2014, Vol. 2, No. 1/Transplantation of neural progenitor cells stimulates endogenous neurogenesis in mice after ischemic stroke

Cell and Organ Transplantology. 2014; 2(1):85-89.
DOI: 10.22494/COT.V2I1.41

Transplantation of neural progenitor cells stimulates endogenous neurogenesis in mice after ischemic stroke

Tsupykov O. M.1,2,3, Kyryk V. M.2, Mamchur A. A.2, Poberezhnyi P. A.2, Butenko H. M.2, Skybo G. G.1,2,3
1Bogomoletz Institute of Physiology NAS Ukraine, Кyiv, Ukraine
2State Key Laboratory , Кyiv, Ukraine
3State Institute of Genetic and Regenerative Medicine NAMS Ukraine, Kyiv, Ukraine

Abstract
The researchers have currently been actively investigating the possibilities for transplantation of the stem cells of various sources for treatment of the ischemic and degenerative diseases of the nervous systemInfluence of transplantation of the hippocampal neural progenitor cells (NPCs) on endogenous neurogenesis in the mice after brain ischemia-reperfusion induced by 20 min occlusion of both carotid arteries has been studied. Following 24 hours after occlusion the NPCsisolated from the hippocampus of the FVB-Cg-Tg(GFPU)5Nagy/J mice transgenic by the GFP gene were transplanted stereotactically into hippocampal CA1 area of the experimental animals. For evaluating neurogenesis in the hippocampus of the ischemic animals we used immunohistochemical staining of the brain slices for BrdU and doublecortin (DCX). It has been found that transplantation of neural progenitor cells increased the number of BrdU- and DCX-positive cells in the dentate gyrus of the hippocampus after short-term global ischemia.
These data allow admit that NPC transplantation to the ischemic animals influences on endogenous adaptation processes in the brain and on the neurogenesis, in particular.

Keywords: neural stem cells, stereotaxic transplantation, brain ischemia, neurogenesis, hippocampus.

Full Text PDF

1. Tavazoie M, Van der Veken L, Silva-Vargas V, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008; 3(3):279–288.
https://doi.org/10.1016/j.stem.2008.07.025
PMid:18786415
2. Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential . Neurorehabil Neural Repair. 2013; 27(5):469–478.
https://doi.org/10.1177/1545968312474119
PMid:23392917
3. Li Y, Yu SP, Mohamad O, et al. Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice. Transl. Stroke Res. 2010; 3:184–196.
https://doi.org/10.1007/s12975-010-0016-6
PMid:21792374 PMCid:PMC3142584
4. Choi JH., Yoo KY, Lee CH, et al. Comparison of neurogenesis in the dentate gyrus between the adult and aged gerbil following transient global cerebral ischemia . Neurochem. Res. 2012; 37(4):802–810.
https://doi.org/10.1007/s11064-011-0675-z
PMid:22215251
5. Sun X, Zhang QW, Xu M, et al. New striatal neurons form projections to substantia nigra in adult rat brain after stroke . Neurobiol. Dis. 2012; 45(1):601–609.
https://doi.org/10.1016/j.nbd.2011.09.018
PMid:22005319
6. Sun CR, Chen ZH, Yin SY, et al. Brain ischemia induces regeneration of interneurons but not projection neurons . Restor. Neurol. Neurosci. 2013; 31(4):461–72.
PMid:23666199
7. Kuzumaki N, Ikegami D, Tamura R, et al. Hippocampal epigenetic modification at the doublecortin gene is involved in the impairment of neurogenesis with aging . Synapse. 2010; 64(8):611–616.
https://doi.org/10.1002/syn.20768
PMid:20340168
8. Hwang IK, Yoo KY, Yi SS, et al. Age-related differentiation in newly generated DCX immunoreactive neurons in the subgranular zone of the gerbil dentate gyrus . Neurochem. Res. 2008; 33:867–872.
https://doi.org/10.1007/s11064-007-9528-1
PMid:17987384
9. Jenny B, Kanemitsu M, Tsupykov O., et al. Fibroblast growth factor-2 overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential. Stem Cells. 2009; 27(6):1309–1317.
https://doi.org/10.1002/stem.46
PMid:19489096
10. Liu XL, Zhang W, Tang SJ, et al. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int. J. Clin. Exp. Pathol. 2013; 7(1):174–183.
PMid:24427337 PMCid:PMC3885471
11. Kaengkan P, Baek SE, Kim JY, et al. Administration of mesenchymal stem cells and ziprasidone enhanced amelioration of ischemic brain damage in rats. Mol. Cells. 2013; 36(6):534–541.
https://doi.org/10.1007/s10059-013-0235-2
PMid:24292945 PMCid:PMC3887965
12. Yuan T, Liao W, Feng N, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurological function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther. 2013; 4(3):73–82.
https://doi.org/10.1186/scrt224
PMid:23769173 PMCid:PMC3706848
13. Tsupykov OM, Kyryk VM, Rybachuk OA ta in. Vplyv transplantacii’ nejral’nyh stovburovyh klityn na kognityvni funkcii’ myshej pislja cerebral’noi’ ishemii’-reperfuzii’. [The effect of transplantation of neural stem cells on the cognitive function of mice after cerebral ischemia-reperfusion]. Klitynna ta organna transplantologija-Cellular and organ transplantation, 2013; 1(1):88–91 (in Ukrainian).
14. Hodges H, Sowinski P, Fleming P, et al. Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats . Neuroscience. 1996; 72(4):959–988.
https://doi.org/10.1016/0306-4522(96)00004-8
15. Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J. Cereb. Blood. Flow. Metab. 2012; 32(7):1317–1331.
https://doi.org/10.1038/jcbfm.2011.187
PMid:22252239 PMCid:PMC3390814
16. Dong J, Liu B, Song L, et al. Neural stem cells in the ischemic and injured brain: endogenous and transplanted . Cell Tissue Bank. 2012; 13(4):623–629.
https://doi.org/10.1007/s10561-011-9283-z
PMid:22187262
17. Tsupykov OM, Pivneva TA, Poddubna AO ta in. Migracija ta dyferenciacija transplantovanyh fetal’nyh nejrogennyh klityn u mozku ishemizovanyh tvaryn. [Migration and differentiation of transplanted fetal neurogenic cells in the brain ischemic animals]. Fiziologichnyj zhurnal-Physiological Journal, 2009; 55(4):41–49.
18. Rolando C, Taylor V. Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease . Curr. Top. Dev. Biol. 2014; 107:183–206.
https://doi.org/10.1016/B978-0-12-416022-4.00007-X
PMid:24439807
19. Drew LJ, Fusi S, Hen R. Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus? Learn. Mem. 2013; 20(12):710–729.
https://doi.org/10.1101/lm.026542.112
20. Gould E, McEwen BS, Tanapat P, et al. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 1997; 17:2492–2498.
PMid:9065509
21. Kremer T, Jagasia R, Herrmann A, et al. Analysis of adult neurogenesis: evidence for a prominent “non-neurogenic” DCX-protein pool in rodent brain . PLoS One. 2013; 8(5): e59269.
https://doi.org/10.1371/journal.pone.0059269
PMid:23690918 PMCid:PMC3653925
22. Iwai M, Sato K, Omori N, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J. Cereb. Blood Flow Metab. 2002; 22:411–419.
https://doi.org/10.1097/00004647-200204000-00005
PMid:11919512
23. Kee NJ, Preston E, Wojtowicz JM, et al. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat . Exp. Brain Res. 2001; 136:313–320.
https://doi.org/10.1007/s002210000591
24. Yagita Y, Kitagawa K, Ohtsuki T, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke. 2001; 32:1890–1896.
https://doi.org/10.1161/01.STR.32.8.1890
PMid:11486122
25. Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 1998; 18:7768–7778.
PMid:9742147
26. Bingham B, Liu D, Wood A, et al. Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells. Brain Res. 2005; 1058:167–177.
https://doi.org/10.1016/j.brainres.2005.07.075
PMid:16140288
27. Shetty AK, Hattiangady B, Shetty G. Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia. 2005; 51:173–186.
https://doi.org/10.1002/glia.20187
PMid:15800930
28. Shetty AK, Rao MS, Hattiangady B, et al. Hippocampal neurotrophin levels after injury: relationship to the age of the hippocampus at the time of injury. J. Neurosci. Res. 2004; 78: 520–532.
https://doi.org/10.1002/jnr.20302
PMid:15468179
29. Ueki T, Tanaka M, Yamashita K, et al. A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J. Neurosci. 2003; 23:11732–11740.
PMid:14684875
30. Suhonen JO, Peterson DA, Ray J, et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996; 383:624–627.
https://doi.org/10.1038/383624a0
PMid:8857538
31. Song HJ, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci. 2002; 5(5):438–445.
https://doi.org/10.1038/nn844

Tsupykov OM, Kyryk VM, Mamchur AA, Poberezhnyi PA, Butenko HM, Skybo GG. Transplantation of neural progenitor cells stimulates endogenous neurogenesis in mice after ischemic stroke. Cell and Organ Transplantology. 2014; 2(1):85-89. doi: 10.22494/COT.V2I1.41

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.