Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Home/2013, Vol. 1, No. 1/Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Cell and Organ Transplantology. 2013; 1(1): 17-28.
DOI: 10.22494/COT.V1I1.45

Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Lee Jiun
National University Health System, Singapore

Many of the recent clinical trials have shown high therapeutic potential of cord blood stem cells to treat various diseases in children. In this report we present the results of pilot study of autologous umbilical cord blood cells transplantation for newborn infants with hypoxic-ischemic brain injury. At one year old, case 1 was normal developmentally. Case 2 has gross motor delay with relative sparing of cognition. A multicentre randomised-controlled trial is needed to evaluate clinical effectiveness of this treatment.

Full Text PDF

1. Gunn A, et al. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J. Clin. Invest. 1997; 99(2):248.
PMid:9005993 PMCid:PMC507792
2. Edwards A, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ: British Medical Journal. 2010; 340:363.
PMid:20144981 PMCid:PMC2819259
3. Perlman J, et al. Neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Pediatrics. 2010; 126(5):1319-44.
4. Jacobs S, et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediat Adol Med. 2011; 165(8):692.
5. Das G, Altman J. Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 1971; 173(3997):637-38.
6. Freed C, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New Engl J Med. 2001; 344(10):710-19.
7. Olanow C, et al. A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 2003; 54(3):403-14.
8. Trounson A, et al. Clinical trials for stem cell therapies. BMC Med. 2011; 9(1):52.
PMid:21569277 PMCid:PMC3098796
9. Chen J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32(11):2682-88.
10. Meier C, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediat Res. 2006; 59(2):244-9.
11. Pimentel-Coelho P, et al. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010; 19(3):351-58.
12. Snyder E, et al. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Nat Acad Sci. 1997; 94(21):11663-8.
PMid:9326667 PMCid:PMC23575
13. Ourednik J, et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat biotechnol. 2002; 20(11):1103-10.
14. Ben-Shaanan T, Ben-Hur T, Yanai J. Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatr. 2007; 13(2):222-31.
15. Dasari V, et al. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiology of disease. 2008; 32(3):486-498.
16. Rowe D, et al. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain res. 2010; 1366:172-88.
PMid:20883670 PMCid:PMC2993822
17. Chua S, et al. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine. 2010; 35(16):1520-26.
18. Neuhoff S, et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007; 35(7):1119-31.
19. Liao Y, et al. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplantation. 2013; 48(7):890-900.
20. National University Hospital, Singapore. Autologous cord blood cells for brain injury in term newborns. In: Bethesda (MD): National Library of Medicine (US). 2000 – NLM Identifier: NCT01649648 [cited 2013 Sep 03]. — Available from:

Lee Jiun. Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy. Cell and Organ Transplantology. 2013; 1(1):27-28. doi: 10.22494/COT.V1I1.45


Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.