Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Home/2013, Vol. 1, No. 1/Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Cell and Organ Transplantology. 2013; 1(1): 17-28.
DOI: 10.22494/COT.V1I1.45

Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy

Lee Jiun
National University Health System, Singapore

Abstract
Many of the recent clinical trials have shown high therapeutic potential of cord blood stem cells to treat various diseases in children. In this report we present the results of pilot study of autologous umbilical cord blood cells transplantation for newborn infants with hypoxic-ischemic brain injury. At one year old, case 1 was normal developmentally. Case 2 has gross motor delay with relative sparing of cognition. A multicentre randomised-controlled trial is needed to evaluate clinical effectiveness of this treatment.

Full Text PDF

1. Gunn A, et al. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J. Clin. Invest. 1997; 99(2):248.
https://doi.org/10.1172/JCI119153
PMid:9005993 PMCid:PMC507792
2. Edwards A, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ: British Medical Journal. 2010; 340:363.
https://doi.org/10.1136/bmj.c363
PMid:20144981 PMCid:PMC2819259
3. Perlman J, et al. Neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Pediatrics. 2010; 126(5):1319-44.
https://doi.org/10.1542/peds.2010-2972B
PMid:20956431
4. Jacobs S, et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediat Adol Med. 2011; 165(8):692.
https://doi.org/10.1001/archpediatrics.2011.43
PMid:21464374
5. Das G, Altman J. Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 1971; 173(3997):637-38.
https://doi.org/10.1126/science.173.3997.637
PMid:5564595
6. Freed C, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New Engl J Med. 2001; 344(10):710-19.
https://doi.org/10.1056/NEJM200103083441002
PMid:11236774
7. Olanow C, et al. A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 2003; 54(3):403-14.
https://doi.org/10.1002/ana.10720
PMid:12953276
8. Trounson A, et al. Clinical trials for stem cell therapies. BMC Med. 2011; 9(1):52.
https://doi.org/10.1186/1741-7015-9-52
PMid:21569277 PMCid:PMC3098796
9. Chen J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32(11):2682-88.
https://doi.org/10.1161/hs1101.098367
PMid:11692034
10. Meier C, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediat Res. 2006; 59(2):244-9.
https://doi.org/10.1203/01.pdr.0000197309.08852.f5
PMid:16439586
11. Pimentel-Coelho P, et al. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010; 19(3):351-58.
https://doi.org/10.1089/scd.2009.0049
PMid:19296724
12. Snyder E, et al. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Nat Acad Sci. 1997; 94(21):11663-8.
https://doi.org/10.1073/pnas.94.21.11663
PMid:9326667 PMCid:PMC23575
13. Ourednik J, et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat biotechnol. 2002; 20(11):1103-10.
https://doi.org/10.1038/nbt750
PMid:12379867
14. Ben-Shaanan T, Ben-Hur T, Yanai J. Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatr. 2007; 13(2):222-31.
https://doi.org/10.1038/sj.mp.4002084
PMid:17876325
15. Dasari V, et al. Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiology of disease. 2008; 32(3):486-498.
https://doi.org/10.1016/j.nbd.2008.09.005
PMid:18930139
16. Rowe D, et al. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain res. 2010; 1366:172-88.
https://doi.org/10.1016/j.brainres.2010.09.078
PMid:20883670 PMCid:PMC2993822
17. Chua S, et al. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine. 2010; 35(16):1520-26.
https://doi.org/10.1097/BRS.0b013e3181c3e963
PMid:20581748
18. Neuhoff S, et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007; 35(7):1119-31.
https://doi.org/10.1016/j.exphem.2007.03.019
PMid:17588481
19. Liao Y, et al. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplantation. 2013; 48(7):890-900.
https://doi.org/10.1038/bmt.2012.169
PMid:22964590
20. National University Hospital, Singapore. Autologous cord blood cells for brain injury in term newborns. In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 – NLM Identifier: NCT01649648 [cited 2013 Sep 03]. — Available from: http://clinicaltrials.gov/show/NCT01649648.

Lee Jiun. Autologous umbilical cord blood cells for newborn infants with hypoxic-ischemic encephalopathy. Cell and Organ Transplantology. 2013; 1(1):27-28. doi: 10.22494/COT.V1I1.45

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.