Effect of neural stem cell transplantation on cognitive functions of mice after cerebral ischemia-reperfusion

Home/2013, Vol. 1, No. 1/Effect of neural stem cell transplantation on cognitive functions of mice after cerebral ischemia-reperfusion

Cell and Organ Transplantology. 2013; 1(1):92-95.
DOI: 10.22494/COT.V1I1.51

Effect of neural stem cell transplantation on cognitive functions of mice after cerebral ischemia-reperfusion

Tsupykov O. M.1,2,3, Kyryk V. M.3, Rybachuk O. A.1,2,3, Poberezhnyi P. A.3, Mamchur A. A.2, Butenko H. M.3, Pivneva T. A.1,2,3, Skibo G. G.1,2,3
1Bogomoletz Institute of Physiology NAS Ukraine, Кyiv, Ukraine
2State Key Laboratory , Кyiv, Ukraine
3State Institute of Genetic and Regenerative Medicine NAMS Ukraine, Kyiv, Ukraine

 Abstract
This study is aimed to determine the effect of transplantation of neural progenitor cells (NPCs) isolated from fetal hippocampus on cognitive functions of experimental animals after short-term global cerebral ischemia. NPCs were isolated from hippocampus of FVB-Cg-Tg(GFPU)5Nagy/J mice, transgenic by the GFP. Ischemic brain injury in FVB “wild” type mice was modeled by bilateral occlusion of the common carotid arteries for 20 min. GFP-positive NPCs were stereotaxically transplanted into the hippocampus of experimental animals in 24 hours after ischemia-reperfusion. Cognitive functions were evaluated using Morris water maze. Results of this study showed that global short-term cerebral ischemia resulted into cognitive impairments in mice. Stereotaxic transplantation of NPCs promoted the cognitive function recovery in experimental animals after ischemic brain injury. Thus, the data indicates that transplantation of NPCs may have a therapeutic effect in treating of ischemic stroke.

Full Text PDF

1. Babcock AM, Baker DA, Lovec R. Locomotor activity in the ischemic gerbils. Brain Res. 1993; 625:351-54.
https://doi.org/10.1016/0006-8993(93)91081-3
2. Bannerman DM, Good MA, Butcher SP, et al. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature. 1995; 378:182-6.
https://doi.org/10.1038/378182a0
PMid:7477320
3. Caeiro L, Ferro M.J, Albuquerque R, et al. Delirium in the first days of acute stroke. J Neurol. 2004; 251:171-8.
https://doi.org/10.1007/s00415-004-0294-6
PMid:14991351
4. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2005; 2(3):396-409.
https://doi.org/10.1602/neurorx.2.3.396
PMid:16389304 PMCid:PMC1144484
5. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003; 4:692-9.
https://doi.org/10.1161/01.RES.0000063425.51108.8D
PMid:12609969
6. Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci. 2007; 26:605-14.
https://doi.org/10.1111/j.1460-9568.2007.05702.x
PMid:17686040
7. Gage F. H. Transplantation in the future. Prog Brain Res. 2012; 201:7-13.
https://doi.org/10.1016/B978-0-444-59544-7.00001-9
PMid:23186707
8. Gelati M, Profico D, Projetti-Pensi M, et al. Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system. Methods Mol Biol. 2013; 1059:65-77.
https://doi.org/10.1007/978-1-62703-574-3_6
PMid:23934834
9. Ginsberg M.D, Busto R. Rodent models of cerebral ischemia. Stroke. 1989; 20(12):1627-42.
https://doi.org/10.1161/01.STR.20.12.1627
10. Graham SM, McCullough LD, Murphy SJ. Animal Models of Ischemic Stroke: Balancing Experimental Aims and Animal Care. Comp Med. 2004; 54(5):486-96.
PMid:15575362
11. Guzman R, Bliss T, De Los Angeles A, et al. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res. 2008; 86:873-82.
https://doi.org/10.1002/jnr.21542
PMid:17975825
12. Hadjiev DI, Mineva PP , Vukov MI. Multiple modifiable risk factors for first ischemic stroke: a population-based epidemiological study. Eur J Neurol. 2003; 10(5):577-82.
https://doi.org/10.1046/j.1468-1331.2003.00651.x
PMid:12940842
13. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant. 2007; 16(2):133-50.
PMid:17474295
14. Ide T, Morikawa E, Kirino T. An immunosuppressant, FK506, protects hippocampal neurons from forebrain ischemia in the Mongolian gerbil. Neurosci Lett. 1996; 204:157-60.
https://doi.org/10.1016/0304-3940(96)12352-1
15. Jeffery KJ, Morris RG. Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus. 1993; 3:133-40.
https://doi.org/10.1002/hipo.450030205
PMid:8353600
16. Jenny B, Kanemitsu M, Tsupykov O, et al. Fibroblast growth factor-2 overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential. Stem Cells. 2009; 27(6):1309-17.
https://doi.org/10.1002/stem.46
PMid:19489096
17. Kempermann G, Jessberger S, Steiner B, Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004; 27:447-52.
https://doi.org/10.1016/j.tins.2004.05.013
PMid:15271491
18. Kollmar R, Schwab S. Ischaemic stroke: acute management, intensive care, and future perspectives. Br J Anaesth. 2007; 99(1):95-101.
https://doi.org/10.1093/bja/aem138
PMid:17573396
19. Kondziolka D, Wechsler L, Goldstein S, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000; 55(4):565-9.
https://doi.org/10.1212/WNL.55.4.565
PMid:10953194
20. Lelong V, Dauphin F, Boulouard M. RS 67333 and D-cycloserine accelerate learning acquisition in the rat. Neuropharmacology. 2001; 41:517-22.
https://doi.org/10.1016/S0028-3908(01)00085-5
21. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006; 441(7097):1094-6.
https://doi.org/10.1038/nature04960
PMid:16810245
22. Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol. 2013; 111:169-76.
https://doi.org/10.1016/B978-0-444-52891-9.00016-6
PMid:23622161
23. Matsuda S, Wen T.-C, Morita F, et al. Interleukin-6 prevents ischemia-induced learning disability and neuronal and synaptic loss in gerbils. Neurosci Lett. 1996; 204:109-12.
https://doi.org/10.1016/0304-3940(96)12340-5
24. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984; 11:47-60.
https://doi.org/10.1016/0165-0270(84)90007-4
25. Savitz SI, Dinsmore JH, Wechsler LR, et al. Cell therapy for stroke. NeuroRx. 2004; 1(4):406-14.
https://doi.org/10.1602/neurorx.1.4.406
PMid:15717044 PMCid:PMC534949
26. Tsupykov OM, Pivneva TA, Poddubna AO, et al. Migration and differentiation of transplanted fetal neurogenic cells in animals with brain ischemia. Fiziol Zh. 2009; 55(4):41-9.
PMid:19827629
27. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006; 1(2):848-58.
https://doi.org/10.1038/nprot.2006.116
PMid:17406317 PMCid:PMC2895266
28. Williams B, Keating A. Cell therapy for age-related disorders: myocardial infarction and stroke – a mini-review. Gerontology. 2008; 54(5):300-11.
https://doi.org/10.1159/000156223
PMid:18797160
29. Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia. Brain Res. 2005; 1063(2):140-50.
https://doi.org/10.1016/j.brainres.2005.09.049
PMid:16289485
30. Yin W, Ma L, Zhang J, et al. The migration of neural progenitor cell mediated by SDF-1 is NF-κB/HIF-1α dependent upon hypoxia. CNS Neurosci Ther. 2013; 19(3):145-53.
https://doi.org/10.1111/cns.12049
PMid:23311761
31. Yuan T, Liao W, Feng NH, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurological function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013; 4(3):73-83.
https://doi.org/10.1186/scrt224
PMid:23769173 PMCid:PMC3706848
32. Zhao LX, Zhang J, Cao F, et al. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection. Exp. Neurol. 2004; 4:396-406.
https://doi.org/10.1016/j.expneurol.2004.06.025
PMid:15530878

Tsupykov OM, Kyryk VM, Rybachuk OA, Poberezhnyi PA, Mamchur AA, Butenko HM, Pivneva TA, Skibo GG. Effect of neural stem cell transplantation on cognitive functions of mice after cerebral ischemia-reperfusion. Cell and Organ Transplantology. 2013; 1(1):92-95. doi: 10.22494/COT.V1I1.51

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.