Traumatic brain injury: pathogenesis, experimental models, prospects of cell-based therapy

Home/2017, Vol. 5, No. 2/Traumatic brain injury: pathogenesis, experimental models, prospects of cell-based therapy

Traumatic brain injury: pathogenesis, experimental models, prospects of cell-based therapy

Chayka A. V.1, Zaben’ko Y. Y.1, Labunets I. F.2, Pivneva T. A.1,2
1Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
2State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

Abstract
Traumatic brain injury is the brain damage caused by external mechanical force, for example: a severe impact as a result of a car accident, a blow of a blast wave, biomechanical damage to the brain as a result of a collision with contact sports, etc. This is a complex trauma with a wide range of symptoms became the main cause of death and disability in modern society throughout the world. The results of numerous therapeutic approaches to treating the consequences of injuries have shown promising perspectives in animal models of traumatic brain injury, but have not achieved any significant efficacy in clinical trials. In this review, we will consider the current topical issues of traumatic brain injury: a modern classification; general principles of the development of the pathological process; models of brain trauma in animals; therapy with the application of stem cells of various genesis.

Keywords: traumatic brain injury; animal models of traumatic brain injury; stem cells therapy

 

1. Menon DK, Schwab K, Wright DW, et al. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010; 91(11): 1637-40.
https://doi.org/10.1016/j.apmr.2010.05.017
PMid:21044706
2. Saatman KE, Duhaime AC, Bullock R, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008; 25(7): 719-38.
https://doi.org/10.1089/neu.2008.0586
PMid:18627252 PMCid:PMC2721779
3. Rostami E. Traumatic Brain Injury Models in Animals. Methods Mol Biol. 2016; 1462: 47-59.
https://doi.org/10.1007/978-1-4939-3816-2_4
PMid:27604712
4. Prins M, Greco T, Alexander D, et al. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013; 6(6): 1307-15.
https://doi.org/10.1242/dmm.011585
PMid:24046353 PMCid:PMC3820255
5. Faul M, Xu L, Wald MM, et al. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. 2010. Available: https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf
https://doi.org/10.15620/cdc.5571
7. Ovsyannikov DM, Chekhonatsky AA, Kolesov VN, et al. Social and Epidemiological Aspects of Craniocerebral Trauma (review). Saratov Journal of Medical Scientific Research. 2012; 8(3): 777–85.
8. Agoston DV. Bench-to-Bedside and Bedside Back to the Bench; Seeking a Better Understanding of the Acute Pathophysiological Process in Severe Traumatic Brain Injury. Front Neurol. 2015; 6: 47
https://doi.org/10.3389/fneur.2015.00047
PMid:25852631 PMCid:PMC4362297
9. Blyth BJ, Bazarian JJ. Traumatic alterations in consciousness: traumatic brain injury. Emerg Med Clin North Am. 2010; 28(3): 571-94.
https://doi.org/10.1016/j.emc.2010.03.003
PMid:20709244 PMCid:PMC2923650
10. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010; 27(8): 1529-40.
https://doi.org/10.1089/neu.2010.1358
PMid:20504161
11. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007; 99(1): 4-9.
https://doi.org/10.1093/bja/aem131
PMid:17573392
12. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013; 14(2): 128-42.
https://doi.org/10.1038/nrn3407
PMid:23329160 PMCid:PMC3951995
13. Reilly PL, Graham DI, Adams JH, et al. Patients with head injury who talk and die. Lancet 2. 1975; 7931: 375-7.
https://doi.org/10.1016/S0140-6736(75)92893-7
14. Algattas H, Huang JH. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci. 2014; 15(1): 309-41.
https://doi.org/10.3390/ijms15010309
PMid:24381049 PMCid:PMC3907812
15. Jalloh I, Carpenter KL, Helmy A, et al. Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab Brain Dis. 2015; 30(3): 615-32.
https://doi.org/10.1007/s11011-014-9628-y
PMid:25413449 PMCid:PMC4555200
16. Hinzman JM, Thomas TC, Quintero JE, et al. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma. 2012; 29(6): 1197-208.
https://doi.org/10.1089/neu.2011.2261
PMid:22233432 PMCid:PMC3325551
17. Xiong Y, Gu Q, Peterson PL, et al. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma. 1997; 14(1): 23-34.
https://doi.org/10.1089/neu.1997.14.23
PMid:9048308
18. Farkas O, Povlishock JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res. 2007; 161: 43-59.
https://doi.org/10.1016/S0079-6123(06)61004-2
19. Tomkins O, Feintuch A, Benifla M, et al. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011; doi:10.1155/2011/765923.
https://doi.org/10.1155/2011/765923
20. Stoica BA, Faden AI. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 2010; 7(1): 3-12.
https://doi.org/10.1016/j.nurt.2009.10.023
PMid:20129492 PMCid:PMC2841970
21. Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015; 72(3): 355-62.
https://doi.org/10.1001/jamaneurol.2014.3558
PMid:25599342 PMCid:PMC5001842
22. Kettenmann H, Hanisch UK, Noda M, et al. Physiology of microglia. Physiol Rev. 2011; 91(2): 461-553.
https://doi.org/10.1152/physrev.00011.2010
PMid:21527731
23. Mannix R, Berglass J, Berkner J, et al. Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury. 2014; 12(6): 1342-50.
24. Hanisch UK, van Rossum D, Xie Y, et al. The microglia-activating potential of thrombin: the protease is not involved in the induction of proinflammatory cytokines and chemokines. J Biol Chem. 2004; 279(50): 51880-7.
https://doi.org/10.1074/jbc.M408318200
PMid:15452111
25. Zabenko YY, Pivneva TA. Flavonoid quercetin reduces gliosis after repetitive mild traumatic brain injury in mice. Fisiol Zh. 2016; 62(5): 50-6.
https://doi.org/10.15407/fz62.05.050
26. Wurzelmann M, Romeika J, Sun D. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res. 2017; 12(1): 7-12.
https://doi.org/10.4103/1673-5374.198964
PMid:28250730 PMCid:PMC5319242
27. Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol. 2016; 275(3): 316-27.
https://doi.org/10.1016/j.expneurol.2015.08.018
PMid:26342753 PMCid:PMC4689601
28. Iudice A, Murri L. Pharmacological prophylaxis of post-traumatic epilepsy. Drugs. 2000; 59(5): 1091-9.
https://doi.org/10.2165/00003495-200059050-00005
PMid:10852641
29. Dixon CE, Lyeth BG, Povlishock JT, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987; 67(1): 110-9.
https://doi.org/10.3171/jns.1987.67.1.0110
PMid:3598659
30. Finnie JW, Blumbergs PC. Animal models. Traumatic brain injury. Vet Pathol. 2002; 396: 679-689.
https://doi.org/10.1354/vp.39-6-679
PMid:12450198
31. Morales DM, Marklund N, Lebold DD, et al. Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience. 2005;136(4): 971-89.
https://doi.org/10.1016/j.neuroscience.2005.08.030
PMid:16242846
32. Zabenko Ye, Pivneva T. Behavioral reactions and structural alterations of hippocampal tissue after repetitive mild traumatic brain injury in mice. Studia Universitatis Babeş – Bolyai, Biologia, Lix. 2014; 2: 63-71.
33. Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994; 80(2): 291-300.
https://doi.org/10.3171/jns.1994.80.2.0291
PMid:8283269
34. Lighthall JW. Controlled cortical impact: a new experimental brain injury model. J Neurotrauma. 1988; 5: 1-15.
https://doi.org/10.1089/neu.1988.5.1
PMid:3193461
35. Dixon CE, Clifton GL, Lighthall JW, et al. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1991; 39(3): 253-62.
https://doi.org/10.1016/0165-0270(91)90104-8
36. Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma. 2002; 19(5): 503-557.
https://doi.org/10.1089/089771502753754037
PMid:12042091 PMCid:PMC1462953
37. Gurkoff G, Shahlaie K, Lyeth B, et al. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel). 2013; 6(7): 788-812.
https://doi.org/10.3390/ph6070788
PMid:24276315 PMCid:PMC3816709
38. Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics. 2010; 7(1): 51-61.
https://doi.org/10.1016/j.nurt.2009.10.021
PMid:20129497 PMCid:PMC2818465
39. Gudeman SK, Miller JD, Becker DP. Failure of high-dose steroid therapy to influence intracranial pressure in patients with severe head injury. J Neurosurg. 1979; 51(3): 301-306.
https://doi.org/10.3171/jns.1979.51.3.0301
PMid:469578
40. Morris GF, Bullock R, Marshall SB, et al. Failure of the competitive N-Methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg. 1999; 91(5): 737-43.
https://doi.org/10.3171/jns.1999.91.5.0737
PMid:10541229
41. Ahmed AI, Gajavelli S, Spurlock MS, et al. Stem cells for therapy in TBI. J R Army Med Corps. 2016; 162(2): 98-102.
https://doi.org/10.1136/jramc-2015-000475
PMid:26338987
42. Arsenijevic Y, Villemure JG, Brunet JF, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001; 170(1): 48-62.
https://doi.org/10.1006/exnr.2001.7691
PMid:11421583
43. Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci. 1999; 2(10): 894-7.
https://doi.org/10.1038/13197
PMid:10491610
44. Sun D. The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regeneration Research. 2014; 9(7): 688-92.
https://doi.org/10.4103/1673-5374.131567
PMid:25206873 PMCid:PMC4146269
45. van Praag H, Schinder AF, Christie BR. Functional neurogenesis in the adult hippocampus. Nature. 2002; 415(6875): 1030-4.
https://doi.org/10.1038/4151030a
PMid:11875571
46. Dixon KJ, Theus MH, Nelersa CM, et al. Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. J Neurotrauma. 2015; 32(11): 753-64.
https://doi.org/10.1089/neu.2014.3390
PMid:25290253 PMCid:PMC4449704
47. Rolfe A, Sun D. Stem Cell Therapy in Brain Trauma: Implications for Repair and Regeneration of Injured Brain in Experimental TBI Models. CRC Press/Taylor & Francis (c) 2015. 200p.
48. Zheng W, ZhuGe Q, Zhong M, et al. Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma. 2013; 30(22): 1872-80.
https://doi.org/10.1089/neu.2010.1579
PMid:21275797 PMCid:PMC3815038
49. Sun D, Bullock MR, Altememi N, et al. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma. 2010; 27(5): 923-38.
https://doi.org/10.1089/neu.2009.1209
PMid:20158379 PMCid:PMC2943945
50. Llorens-Bobadilla E, Zhao S, Baser A, et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015; 17(3): 329-40.
https://doi.org/10.1016/j.stem.2015.07.002
PMid:26235341
51. Goodus MT, Guzman AM, Calderon F, et al. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury. Dev Neurosci. 2015; 37(1): 29-42.
https://doi.org/10.1159/000367784
PMid:25377490
52. Koch P, Kokaia Z, Lindvall O, et al. Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol. 2009; 8(9): 819-29.
https://doi.org/10.1016/S1474-4422(09)70202-9
53. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999; 2(3): 266-70.
https://doi.org/10.1038/6368
PMid:10195220
54. Dadwal P, Mahmud N, Sinai L, et al. Activating еndogenous neural precursor cells using metformin leads to neural repair and functional recovery in a model of childhood brain injury. Stem Cell Reports. 2015; 5(2): 166-73.
https://doi.org/10.1016/j.stemcr.2015.06.011
PMid:26235894 PMCid:PMC4618663
55. Tsymbaliuk VI, Medvediev VV. Neyrogennye stvolovye kletki [Neurogenic stem cells]. Kiev: Koval, 2005. 596 p. [In Russian] PMid:16108229
56. Donega М, Giusto E, Cossetti C, et al. Systemic injection of neural stem/progenitor cells in mice with chronic EAE. J Vis Exp. 2014; 86: 51154.
https://doi.org/10.3791/51154
57. Tsupykov O, Kyryk V, Smozhanik E, et al. Long-term fate of grafted hippocampal neural progenitor cells following ischemic injury. J Neurosci Res. 2014; 92(8): 964-74.
https://doi.org/10.1002/jnr.23386
PMid:24753232
58. Gage FH. Stem cells of the central nervous system. Curr Opin Neurobio. 1998; l8(5): 671-76.
59. Skardelly M, Gaber K, Burdack S, et al. Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma. 2011; 28(3): 401-14.
https://doi.org/10.1089/neu.2010.1526
PMid:21083415
60. Wennersten A, Meier X, Holmin S, et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg. 2004; 100(1): 88-96.
https://doi.org/10.3171/jns.2004.100.1.0088
PMid:14743917
61. Hentze H, Graichen R, Colman A, Hentze H. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007; 25(1): 24-32.
https://doi.org/10.1016/j.tibtech.2006.10.010
PMid:17084475
62. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010; 5: 121-43.
https://doi.org/10.2217/rme.09.74
PMid:20017699 PMCid:PMC2833273
63. Wallenquist U, Brannvall K, Clausen A, et al. Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restor Neurol Neurosci. 2009; 27(4): 323-34.
PMid:19738325
64. Tajiri N, Acosta SA, Shahaduzzaman M, et al. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci. 2014; 34(1): 313-26.
https://doi.org/10.1523/JNEUROSCI.2425-13.2014
PMid:24381292 PMCid:PMC3866490
65. Walker PA, Shah SK, Hurting MT, et al. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech. 2009; 2(1-2): 23-38.
https://doi.org/10.1242/dmm.001198
PMid:19132123 PMCid:PMC2615170
66. Sun D, Gugliotta M, Rolfe A, et al. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011; 28(6): 961-72.
https://doi.org/10.1089/neu.2010.1697
PMid:21332258 PMCid:PMC3113420
67. Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther. 2011; 6(4): 327-38.
https://doi.org/10.2174/157488811797904362
68. Yan J, Xu L, Welsh AM, et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 2007; 4(2): 39.
https://doi.org/10.1371/journal.pmed.0040039
PMid:17298165 PMCid:PMC1796906
69. Sullivan GM, Armstrong RC. Transplanted adult neural stem cells express sonic hedgehog in vivo and suppress white matter neuroinflammation after experimental traumatic brain injury. Stem Cells Int. 2017; doi: 10.1155/2017/9342534.
https://doi.org/10.1155/2017/9342534
70. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell stem cell. 2015;17(1): 11-22.
https://doi.org/10.1016/j.stem.2015.06.007
PMid:26140604
71. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-76.
https://doi.org/10.1016/j.cell.2006.07.024
PMid:16904174
72. Dunkerson J, Moritz KE, Young J, et al. Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. Restor Neurol Neurosci. 2014; 32(5): 675-87.
PMid:25079980
73. Cary WA, Hori CN, Pham MT, et al. Efficient Generation of Induced Pluripotent Stem and Neural Progenitor Cells from Acutely Harvested Dura Mater Obtained During Ventriculoperitoneal Shunt Surgery. World Neurosurg. 2015; 84(5): 1256-1266.
https://doi.org/10.1016/j.wneu.2015.05.076
PMid:26074438
74. Kobayashi Y, Okada Y, Itakura G. et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One. 2012; 7(12): 52787.
https://doi.org/10.1371/journal.pone.0052787
PMid:23300777 PMCid:PMC3531369
75. Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010; 465(7299):704-12.
https://doi.org/10.1038/nature09229
PMid:20535199 PMCid:PMC2901154
76. Chang CP, Chio CC, Cheong CU, et al. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond). 2013; 124(3): 165-76.
https://doi.org/10.1042/CS20120226
PMid:22876972
77. Nardi NB, da Silva Meirelles. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006; 174: 249-82.
https://doi.org/10.1007/3-540-31265-X_11
78. Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, et al. Effects of intravenous administration of allogenic bone marrow and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013; 4(1): 11.
https://doi.org/10.1186/scrt159
PMid:23356495 PMCid:PMC3706777
79. Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004; 21(1): 33-9.
https://doi.org/10.1089/089771504772695922
PMid:14987463
80. Shi W, Huang CJ, Xu XD, et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomaterialia. 2016; 45: 247-261.
https://doi.org/10.1016/j.actbio.2016.09.001
PMid:27592818
81. Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003; 53(3): 697-703.
https://doi.org/10.1227/01.NEU.0000079333.61863.AA
PMid:12943585
82. Wang Z, Luo Y, Chen L, et al. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp Ther Med. 2017; 13(6):3613-18.
https://doi.org/10.3892/etm.2017.4423

 

Chayka AV, Zaben’ko YY, Labunets IF, Pivneva TA. Traumatic brain injury: pathogenesis, experimental models, prospects of cell-based therapy. Cell and Organ Transplantology. 2017; 5(2):in press. doi:10.22494/cot.v5i2.78

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.