Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury

Home/2016, Vol. 4, No. 2/Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury

Cell and Organ Transplantology. 2016; 4(2):175-180.
DOI: 10.22494/COT.V4I2.57 

Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury

Medvediev V. V.1, Senchyk Yu. Yu.2, Draguntsova N. G.3, Dychko S. M.3Tsymbaliuk V. I.1,3
1Bogomolets National Medical University, Kyiv, Ukraine
2Kyiv City Clinical Emergency Hospital, Kyiv, Ukraine
3AP. Romodanov State Institute of Neurosurgery NAMS Ukraine, Kyiv, Ukraine

Abstract
Fetal cerebellar tissue contains the largest number of neurogenic progenitors committed on the differentiation into glutamatergic neurons that can be used in the development of promising new treatment for spinal cord injuries.
To evaluate the effect of fetal cerebellar tissue transplantation (FСTT) on the restoration of motor function after spinal cord injury in experiment.
Materials and methods. Animals: inbred albino Wistar rats (5.5 months males, weighting 300 grams); main experimental groups: 1 – spinal cord injury + transplantation of a fragment of fetal (E18) rat cerebellum (n = 15), 2 – spinal cord injury only (n = 40). Model of an injury – left-side spinal cord hemisection at Т11; monitoring of the ipsilateral hind limb function (IHLF) – the Вasso-Вeattie-Вresnahan (BBB) scale.
Results. FСTT normalizes the distribution of IHLF values, distorts the dynamics of the motor function recovery, transforming it from a progressive (in a control group) to the constant with variation within 3-3.6 points BBB during the experiment. FСTT causes early temporary positive effect on the functional state of the motor system, probably provided by mediator-dependent, neuroprotective, proangiogenic effect and remyelination. In our view, the gradual depletion of the FСTT positive effect due to resorption of the graft within the first 2 months is compensated by autoregenerative neoplastic process that is typical for the control group and by autoimmune utilization of myelin-associated inhibitors of axonal growth in the zone of injury that causes stability of the IHLF value during the observation period.
Conclusion. Transplantation of fetal cerebellar tissue causes a short-term positive effect on the motor function recovery limited by the 1st month of the traumatic process. Evaluation of such type of neurotransplantation effectiveness requires taking into account the dynamics of the spasticity and chronic pain.

Key words: spinal cord injury; fetal nervous tissue transplantation; motor function recovery; posttraumatic spasticity

 

Full Text PDF

1. Lee BB, Cripps RA, Fitzharris М, et al. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014; 52(2):110-16.
https://doi.org/10.1038/sc.2012.158
PMid:23439068
2. Volpato FZ, Führmann T, Migliaresi C, et al. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials. 2013; 34(21):4945-55.
https://doi.org/10.1016/j.biomaterials.2013.03.057
PMid:23597407
3. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014; 35(24):6143-56.
https://doi.org/10.1016/j.biomaterials.2014.04.064
PMid:24818883
4. Assunção-Silva RC, Gomes ED, Sousa N, et al. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells International. 2015; Article ID 948040. doi.org/10.1155/2015/948040
https://doi.org/10.1155/2015/948040
5. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zú-iga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Research International. 2015; Article ID 821279
6. Siebert JR, Eade AM, Osterhout DJ. Biomaterial approaches to enhancing neurorestoration after spinal cord injury: strategies for overcoming inherent biological obstacles. BioMed Research International. 2015; Article ID 752572
7. Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater. 2015; 2(1):31-45. doi: 10.1093/rb/rbu017
https://doi.org/10.1093/rb/rbu017
8. Tsintou M. Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res. 2015; 10(5):726-42.
https://doi.org/10.4103/1673-5374.156966
PMid:26109946 PMCid:PMC4468763
9. Woerly S, Doan VD, Evans-Martin F, et al. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci. Res. 2001; 66(6):1187-197.
https://doi.org/10.1002/jnr.1255
PMid:11746452
10. Woerly S, Doan VD, Sosa N, et al. Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int. J. Dev. Neurosci. 2001; 19(1):63-83.
https://doi.org/10.1016/S0736-5748(00)00064-2
11. Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001; 22(10):1095-111.
https://doi.org/10.1016/S0142-9612(00)00354-9
12. Woerly S, Doan VD, Sosa N, et al. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J Neurosci Res. 2004; 75(2):262-72.
https://doi.org/10.1002/jnr.10774
PMid:14705147
13. Tsymbaliuk VI, Medvediev VV. Spinnoy mozg. Elegiya nadezhdy: monografiya [Spinal cord. Elegy of hope: a monograph]. Vinnitsa: Nova Kniga – Vinnitsa: New Book, 2010. 944 p.
14. Woerly S, Awosika O, Zhao P, et al. Expression of heat shock protein (HSP)-25 and HSP-32 in the rat spinal cord reconstructed with Neurogel. Neurochem Res. 2005; 30(6-7):721-35.
https://doi.org/10.1007/s11064-005-6866-8
PMid:16187209
15. Li K, Javed E, Scura D, et al. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol. 2015; 271:479-92.
https://doi.org/10.1016/j.expneurol.2015.07.020
PMid:26216662 PMCid:PMC4586993
16. Dougherty BJ, Gonzalez-Rothi EJ, Lee KZ, et al. Respiratory outcomes after mid-cervical transplantation of embryonic medullary cells in rats with cervical spinal cord injury. Exp Neurol. 2016; 278:22-26.
https://doi.org/10.1016/j.expneurol.2016.01.017
PMid:26808660
17. Gill LC, Gransee HM, Sieck GC, et al. Functional recovery after cervical spinal cord injury: role of neurotrophin and glutamatergic signaling in phrenic motoneurons. Respir Physiol Neurobiol. 2016; 226:128-36.
https://doi.org/10.1016/j.resp.2015.10.009
PMid:26506253
18. Tsymbaliuk VI, Medvediev VV. Neyrogennye stvolovye kletki [Neurogenic stem cells]. Kiev: Koval’ – Kiev: Koval, 2005. 596 p.
19. Döbrössy M, et al. Neurorehabilitation with neural transplantation. Neurorehabil. Neural Repair. 2010; 24(8):692-701.
https://doi.org/10.1177/1545968310363586
PMid:20647502
20. Zhang Q, et al. Multichannel silk protein/laminin grafts for spinal cord injury repair. J. Biomed. Mater. Res. A. 2016; doi:10.1002/jbm.a.35851 [Epub ahead of print].
https://doi.org/10.1002/jbm.a.35851
21. Taylor L, Jones L, Tuszynski MH, et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci. 2006; 26(38):9713-21.
https://doi.org/10.1523/JNEUROSCI.0734-06.2006
PMid:16988042
22. Gao R, et al. Exogenous neuritin promotes nerve regeneration after acute spinal cord injury in rats. Hum Gene Ther. 2016; 27(7):544-54.
https://doi.org/10.1089/hum.2015.159
PMid:27009445
23. Hanna A, et al. Sustained release of Neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury. J Neurosci. Res. 2016; 94(7):645-52.
https://doi.org/10.1002/jnr.23730
PMid:27015737
24. Lent R, Azevedo FAC, Andrade-Moraes CH, et al. How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci. 2002; 35:199. doi:10.1111/j.1460-9568.2011.07923.x
https://doi.org/10.1111/j.1460-9568.2011.07923.x
26. Hashimoto M, Hibi M. Development and evolution of cerebellar neural circuits. Dev Growth Differ. 2012; 54(3):373-89.
https://doi.org/10.1111/j.1440-169X.2012.01348.x
PMid:22524607
27. Hoshino M. Neuronal subtype specification in the cerebellum and dorsal hindbrain. Dev. Growth Differ. 2012; 54(3):317-26.
https://doi.org/10.1111/j.1440-169X.2012.01330.x
PMid:22404503
28. Marzban H, Del Bigio MR, Alizadeh J, et al. Cellular commitment in the developing cerebellum. Front Cell.Neurosci. 2015; doi: 10.3389/fncel.2014.00450
https://doi.org/10.3389/fncel.2014.00450
29. Kumar M, Csaba Z, Peineau S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann. Clin Transl.Neurol. 2014; 1(12):968-981. doi: 10.1002/acn3.137
https://doi.org/10.1002/acn3.137
30. Chang JC, Leung M, Gokozan HN, et al. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice. J Neuropathol Exp Neurol. 2015; 74(3):261-272. doi:10.1097/NEN.0000000000000171
https://doi.org/10.1097/NEN.0000000000000171
31. Ma M, Wu W, Li Q, et al. N-myc is a key switch regulating the proliferation cycle of postnatal cerebellar granule cell progenitors. Sci Rep. 2015; 5:1–13. doi: 10.1038/srep12740
https://doi.org/10.1038/srep12740
32. Leffler SR, Legué E, Aristizábal O,•et al. A mathematical model of granule cell generation during mouse cerebellum development. Bull. Math. Biol. 2016; 78(5):859-878. doi 10.1007/s11538-016-0163-3
https://doi.org/10.1007/s11538-016-0163-3
33. Zhu T, Tang H, Shen Y, et al. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia. Am J Transl Res. 2016; 8(2):705-18.
PMid:27158363 PMCid:PMC4846920
34. Vriend J, Ghavami S, Marzban H. The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain. 2015; 8(1):1-14. doi 10.1186/s13041-015-0155-5
https://doi.org/10.1186/s13041-015-0155-5
35. Ho Y, Li X, Jamison S, et al. PERK activation promotes medulloblastoma tumorigenesis by attenuating premalignant granule cell precursor apoptosis. Am J Pathol. 2016; 186(7):1939-1951. doi: 10.1016/j.ajpath.2016.03.004
https://doi.org/10.1016/j.ajpath.2016.03.004
36. Dey A, Robitaille M, Remke M, et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene. 2016; doi:10.1038/onc.2015.491 [Epub ahead of print].
https://doi.org/10.1038/onc.2015.491
38. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995; 12(1):1-21.
https://doi.org/10.1089/neu.1995.12.1
PMid:7783230
39. Sentilhes L, Michel C, Lecourtois M, et al. Vascular endothelial growth factor and its high–affinity receptor (VEGFR–2) are highly expressed in the human forebrain and cerebellum during development. J. Neuropathol. Exp Neurol. 2010; 69(2):111-28.
https://doi.org/10.1097/NEN.0b013e3181ccc9a9
PMid:20084021
40. Darland DC, Cain JT, Berosik MA, et al. Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development. Developmental Biology. 2011; 358:9-22.
https://doi.org/10.1016/j.ydbio.2011.06.045
PMid:21803034 PMCid:PMC3189089
41. Jankowski J, Miething A, Schilling K, et al. Cell death as a regulator of cerebellar histogenesis and compartmentation. Cerebellum. 2011; 10:373-92.
https://doi.org/10.1007/s12311-010-0222-5
PMid:20941559
42. Kilpatrick DL, Wang W, Gronostajski R, et al. Nuclear factor I and cerebellar granule neuron development: an intrinsic–extrinsic interplay. Cerebellum. 2012; 11:41-49.
https://doi.org/10.1007/s12311-010-0227-0
PMid:22548229 PMCid:PMC3175246
43. De Luca A, Cerrato V, Fuca E, et al.Sonic hedgehog patterning during cerebellar development. Cell. Mol. Life Sci. 2016; 73(2):291-303. doi 10.1007/s00018-015-2065-1
https://doi.org/10.1007/s00018-015-2065-1
44. Yu SW, Friedman B, Cheng Q, et al. Stroke–evoked angiogenesis results in a transient population of microvessels. J Cereb Blood Flow Metab. 2007; 27:755-63.
PMid:16883352
45. Heckman CJ, Enoka RM. Motor unit. Compr. Physiol. 2012; 2:2629-82. doi: 10.1002/cphy.c100087
https://doi.org/10.1002/cphy.c100087
46. D’Amico JM, Condliffe EG, Martins KJB, et al. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Int Neurosci. 2014; 8:1-24. doi: 10.3389/fnint.2014.00036
https://doi.org/10.3389/fnint.2014.00036
47. Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited: a four–phase model. Spinal Cord. 2004; 42:383-95.
https://doi.org/10.1038/sj.sc.3101603
PMid:15037862
48. Wienecke J, Westerdahl AC, Hultborn H, et al. Global gene expression analysis of rodent motor neurons following spinal cord injury associate molecular mechanisms with development of post-injury spasticity. J Neurophysiol. 2010; 103(2):761-78.
https://doi.org/10.1152/jn.00609.2009
PMid:19939961

Medvediev VV, Senchyk YuYu, Draguntsova NG, Dychko SM, Tsymbaliuk VI. Effect of fetal cerebellar tissue transplantation on the restoration of hind limb locomotor function in rats with spinal cord injury. Cell and Organ Transplantology. 2016; 4(2):175-180. doi:10.22494/COT.V4I2.57

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.