Clinical significance of beta-2-microglobulin, enzymes, cytokines in serum and urine in patients with chronic renal allograft dysfunction

Home/2015, Vol. 3, No. 1/Clinical significance of beta-2-microglobulin, enzymes, cytokines in serum and urine in patients with chronic renal allograft dysfunction

Cell and Organ Transplantology. 2015; 3(1): 13-19.
DOI: 10.22494/COT.V3I1.21

Clinical significance of beta-2-microglobulin, enzymes, cytokines in serum and urine in patients with chronic renal allograft dysfunction

Trailin A. V., Pleten M. V., Nikonenko A. S., Ostapenko T. I., Yefimenko N. F.
Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine, Zaporizhzhia, Ukraine

Abstract
The most investigations of the biomarkers of renal allograft dysfunction (RAD) are limited by early post-operational period and are aimed at diagnosis of acute rejection of renal transplant. This work has aimed to establish additional characteristics of chronic RAD by using non-invasive biomarkers of the blood serum and urine.
Materials and methods. 79 patients aged 16 to 59 years (47 men and 32 women) took part in our retrospective study. The alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamil transferase (GGT), alkaline phosphatase (ALP), N-acetyl-β-D-glucosaminidase (NAG); interleukins (IL-2, IL-8, IL-10) and beta-2-microglobulin were evaluated.
Results. Increased IL-10 and β2-MG serum concentration, and increased urinary concentration and activity of β2-MG, IL-2, IL-8, NAG, AP, AST, GGT were typical for chronic RAD. Only NAG was independently significantly associated with chronic RAD in multivariate regression. From the area under ROC-curves were derived, that β2-MG level in serum and urine, and the activity of NAG in urine had the excellent and good power to classify patients with satisfactory function and chronic RAD.
Conclusions. The increase of β2-MG in serum and urine may indicate glomerular and tubular dysfunction, respectively. An increase of urinary NAG indicates the ongoing damage of the tubules. The increase of IL-2 and IL-8 in the urine and IL-10 in serum may indicate the etiology of chronic RAD.

Keywords: kidney transplantation; renal allograft chronic dysfunction; beta-2-microglobulin; aspartate aminotransferase; gamma-glutamil transferase; alkaline phosphatase

Full Text PDF

1. Zograbian R, Driyanska VE, Drannik GM, et al. Pro-(γ-IF) ta protyzapal’ni (IL-10, TFR-β) cytokiny ta i’h spivvidnoshennja jak dodatkovi oznaky dlja dyferencijnoi’ diagnostyky stanu nyrkovogo alotransplantatu u viddalenomu pisljaoperacijnomu periodi. [Pro- (γ-IF) and anti-inflammatory (IL-10, TGF-β) cytokines and their correlation as additional features for differential diagnosis of renal allograft status distant postoperative period]. Ukrai’ns’kyj zhurnal nefrologii’ ta dializu – Ukrainian Journal of Nephrology and Dialysis. 2007; 4(16):62 – 66.
2. Mygal LYa, Bagdasarova IV, Daschenko OO. Sposib diagnostyky stupenja aktyvnosti pijelonefrytychnogo procesu u ditej, hvoryh na pijelonefryt [A method of diagnosis of pyelonephritis in children]. Pat. na vynahid N 82170 UA, МPК (2006), G 01 N33/48. N а 2007 03509, opubl. 11.03.2008. Bjul. N 5 – Patent N 82170 UA MPK (2006) G 01 N33/48. N а 2007 03509, publ. 11.03.2008. Bull. N 5.
3. Nikonenko AS. Morfologicheskij analiz prichin pozdnej disfunkcii pochechnogo transplantata. [Morphological analysis of the causes of late renal transplant dysfunction]. Transplantologija – Transplantology. 2007; 9(1):185-187.
4. Nikonenko AS, Trailin AV, Pleten MV, et al. Citokiny syvorotki krovi i mochi kak markery hronicheskoj disfunkcii pochechnogo allotransplantata. Suchasnі medichnі tehnologії [Cytokines of serum and urine as markers of chronic renal allograft dysfunction]. Suchasnі medichnі tehnologії – Modern medical technology. 2013; 4(20):69-73.
5. Pilotovich VS, Serdyuchenko NS, Arinchin VN, et al. Beta-2-mikroglobulin i ego rol’ v diagnostike nefrologicheskih zabolevanij [The role of beta-2-microglobulin in the diagnosis of nephrological diseases]. Medicinskij zhurnal – Medical Journal. 2011; 1:80-83.
6. Pleten MV, Trailin AV, Yefimenko NF, et al. Diagnosticheskoe znachenie fermentemii i fermenturii u recipientov s hronicheskoj disfunkciej pochechnogo allotransplantata [Diagnostic value of enzymes in the blood and urine of recipients with chronic renal allograft dysfunction]. Eksperymental’na ta klinichna fiziologija i biohimija – Experimental and clinical physiology. 2013; 2:90-96.
7. Emanuel VL. Laboratornaja diagnostika zabolevanij pochek [Laboratory diagnosis of kidney disease]. Izd. 2-e, ispr. i dop. SPb. Tver’, OOO «Izdatel’stvo «Triada» – 2nd Ed., rev. and add. SPb. Tver, LLC “Publisher” Triad “, 2006; 248 p.
8. Guidelines for Immunologic Laboratory Testing in the Rheumatic Diseases: An Introduction Arthritis & Rheumatism (Arthritis Care & Research). American college of rheumatology ad hoc committee on immunologic testing guidelines. 2002; 47(4):429-433.
9. Amirzargar A, Lessan-Pezeshki M, Fathi A, et al. TH1/TH2 cytokine analysis in Iranian renal transplant recipients. Transplant Proc. 2005; 37(7):2985-2987.
10. Cieciura T, Urbanowicz A, Perkowska-Ptasinska A, et al. Tubular and glomerular proteinuria in diagnosing chronic allograft nephropathy with relevance to the degree of urinary albumin excretion Transplant Proc. 2005; 37(2):987-990.
11. Cornell LR, Smith N, Colvin RB, et al. Kidney Transplantation: Mechanisms of Rejection Acceptance Annual Review of Pathology. 2008; 3:189-220.
12. Dieterle F, Perentes E, Cordier A, et al. Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol. 2010; 28(5):463-469.
13. El-Zoghby ZM, Stegall MD, Lager DJ, et al. Identifying specific causes of kidney allograft loss Am J Transplant. 2009; 9(3):527-535.
14. Gupta RK, Jain M, Sharma RK. Serum & urinary IL-2 levels as predictors in acute renal allograft rejection. Indian J Med Res. 2004; 119(1):24-27.
15. Keown P A. Predicting long-term outcome in renal transplantation. Kidney International. 2013; 84:650-652.
https://doi.org/10.1038/ki.2013.275
PMid:24080876
16. Lisowska-Myjak B. Serum and Urinary Biomarkers of Acute Kidney Injury. Blood Purif. 2010; 29:357-365.
https://doi.org/10.1159/000309421
PMid:20389065
17. McDaniel DO, Rigney DA, McDaniel KY, et al. Early expression profile of inflammatory markers and kidney allograft status. Transplant Proc. 2013; 45(4):1520 – 1523.
18. Mengel M, Gwinner W, Schwarz A, et al. Infiltrates in protocol biopsies from renal allografts Am J Transplant. 2007; 7:356 – 365.
19. Nankivell BJ. Rejection of the Kidney Allograft. N Engl J Med. 2010; 363:1451-1462.
20. Omrani MD, Mokhtari MR, Bagheri M, et al. Association of interleukin-10, interferon-gamma, transforming growth factor-beta, and tumor necrosis factor-alpha gene polymorphisms with long-term kidney allograft survival. Iran J Kidney Dis. 2010; 4(2):141-146.
21. Ozer JS, Dieterle F, Troth S, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol. 2010; 28:486-494.
22. Pascual J, Pérez-Sáez MJ, Mir M, et al. Chronic renal allograft injury: early detection, accurate diagnosis and management. Transplant Rev (Orlando). 2012; 26(4):280-290.
https://doi.org/10.1016/j.trre.2012.07.002
PMid:22902496
23. Pereira AB, Teixeira AL, Rezende NA, et al. Urinary chemokines and anti-inflammatory molecules in renal transplanted patients as potential biomarkers of graft function: a prospective study. Int Urol Nephrol. 2012; 44(5):1539-1548.
24. Sellarés J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012; 12(2):388-399.
25. Schaub S, Mayr M, Hönger G, et al. Detection of subclinical tubular injury after renal transplantation: comparison of urine protein analysis with allograft histopathology. Transplantation. 2007; 84(1):104-112.
https://doi.org/10.1097/01.tp.0000268808.39401.e8
PMid:17627245
26. Schoenbach VJ, Rosamond WD. Understanding the Fundamentals of Epidemiology: an Evolving Text. The phenomenon of disease. Chapel Hill. 2001; Сhapter 4:59-81.
27. Sheu JN, Chen SM, Meng MH. The role of serum and urine interleukin-8 on acute pyelonephritis and subsequent renal scarring in children. Pediatr Infect Dis J. 2009; 28(10):885-890.
28. Sekine H, Kawasaki Y, Ohara S, et al. Focal bacterial nephritis without pyuria in a boy presenting with high urinary β2-MG and NAG levels. Fukushima J Med Sci. 2014; 60(1):91-94.
29. Skálová S. The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment. Acta Medica. 2005; 48:75-80.
30. Westhuyzen J, Endre ZH, Reece G, et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant. 2003; 18:543-551.
31. Woo J, Floyd M, Cannon D C. Albumin and beta2-Microglobulin Radioimmunoassays Applied to Monitoring of Renal-Allograft Function and in Differentiating Glomerular and Tubular Diseases. Lin Chem. 1981; 27(5):709-713.
32. Wu I, Parikh CR. Screening for kidney diseases: Older measures versus novel biomarkers. Clin J Am Soc Nephrol. 2008; 3:1895-1901.

Trailin AV, Pleten MV, Nikonenko AS, Ostapenko TI, Yefimenko NF.  Сlinical significance of beta-2-microglobulin, enzymes, cytokines in serum and urine in patients with chronic renal allograft dysfunction. Cell and Organ Transplantology. 2015; 3(1):13-19. doi: 10.22494/COT.V3I1.21

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.