Possibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells

Home/2014, Vol. 2, No. 2/Possibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells

Cell and Organ Transplantology. 2014; 2(2):132-135.
DOI: 10.22494/COT.V2I2.30

Possibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells

Mamchur A. A.
State Institute of Genetic and Regenerative Medicine of Ukrainian NAMS, Kyiv, Ukraine

Abstract
In recent years the concept of tumor stem cells or tumor-initiating cells has gained a wide recognition. Hence the amount of data pertaining to involvement of the latter in the sarcomogenesis increases. At the time being the properties of the tumor-initiating cells are actively studied. As has been found, they are characterized by self-renewal, high migration potential and high level of resistance to chemotherapy. The given characteristics are also analogous for the multipotent mesenchymal stem cells (MMSCs) which are involved in the regeneration processes. The above-said can point to the possibility of the existence of the transformed MMSCs analogs as tumor-initiating cells. In turn, the transformed MMSCs can differ by immortal phenomenon conditioned by high level of telomerase expression, antigens set, genetic and genomic changes. As a consequence, the transformed MMSCs attain potential to form sarcoma.

Full Text PDF

1. Augello A, Kurth TB, Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells and Materials. 2010; 20:121-133.
https://doi.org/10.22203/eCM.v020a11
PMid:21249629
2. Zhao-Jun Liu, Ying Zhuge, Omaida C. Velazquez Trafficking and Differentiation of Mesenchymal Stem Cells. J CellBiochem. 2009; 106(6):984-991.
https://doi.org/10.1002/jcb.22091
PMid:19229871
3. Hass R, Kasper C, Böhm S, Jacobs R, et al. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling. 2011; 9(12):1-14.
https://doi.org/10.1186/1478-811x-9-12
4. Sarugaser R, Hanoun L, Keating A, et al. Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy. PlosOne. 2009; 4(8):e6498.
https://doi.org/10.1371/journal.pone.0006498
PMid:19652709 PMCid:PMC2714967
5. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004; 103(5):1662-1668.
https://doi.org/10.1182/blood-2003-09-3070
PMid:14592819
6. Morikawa S, Mabuchi Y, Kubota Y, et al. Prospectivе identification, isolation, and systemic transplantation of multipotent mesenchymal stem cell sinmurine bone marrow. J ExpMed. 2009; 206(11):2483-2496.
https://doi.org/10.1084/jem.20091046
PMid:19841085 PMCid:PMC2768869
7. Nadri S, Soieimani M, HosSeni RH, et al. Anefficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 2007; 51: 723-729.
https://doi.org/10.1387/ijdb.072352ns
PMid:17939119
8. Eslaminejad MB, Nasarian H, Taghiyar L. Mesenchymal Stem Cell Isolation from the Removed Medium Rat’s Bone Marrow Primary Culture and their Differentiation into Skeletal Cell Lineages. Yakhteh Medical Journa. 2008; 10(1):65-72.
9. Tae SK, Lee SH, Park JS, et al. Mesenchymal stem cells for tissue engineering and regenerative medicine. BiomedMater. 2006; 1(2):63-71.
https://doi.org/10.1088/1748-6041/1/2/003
10. Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J CellPhysiol. 2007; 213(2):341-347.
https://doi.org/10.1002/jcp.21200
11. Mishra PJ, Humeniuk R, Medina DI, et al. Carcinoma-Associated Fibroblast–Like Differentiation of Human Mesenchymal Stem Cells. CancerRes. 2008; 68(11):4331-4339.
https://doi.org/10.1158/0008-5472.can-08-0943
12. Mishra PJ, Glod JW, et al. Mesenchymal stem cells: flip side of the coin. CancerRes. 2009; 69(4):1255-1258.
https://doi.org/10.1158/0008-5472.can-08-3562
13. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. CancerMetastasisRev. 2010; 29(2):249-261.
https://doi.org/10.1007/s10555-010-9222-7
PMid:20411303
14. Houthuijzen J M, Daenen LGM, Roodhart JML, et al. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012; 106(12):1901-1906.
https://doi.org/10.1038/bjc.2012.201
PMid:22596239 PMCid:PMC3388567
15. Wong R. S. Y. Mesenchymal Stem Cells: Angels or Demons? Journal of Biomedicine and Biotechnology. 2011; 2011:1-8.
16. Yen BL, Yen ML. Mesenchymal Stem Cells and Cancer — for Better or for Worse? J. Cancer Mol. 2008; 4(1):5-9.
17. Liu Y, Han Z P, Zang SS, et al. Effects of Inflammatory Factors on Mesenchymal Stem Cells and Their Role in the Promotion of Tumor Angiogenesis in colon Cancer. J Biol Chem. 2011; 286(28):25007-25015.
https://doi.org/10.1074/jbc.M110.213108
PMid:21592963 PMCid:PMC3137074
18. Han Z, Jing Y, Zhang S, et al. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. CellBiosci. 2012; 2(1):2-8.
https://doi.org/10.1186/2045-3701-2-8
19. Djouad F, Plence C, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003; 102(10):3837-3844.
https://doi.org/10.1182/blood-2003-04-1193
PMid:12881305
20. DeMiguel MP, Fuentes-Julian S, Blazquez-Martinez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012; 12(5): 574-591.
https://doi.org/10.2174/156652412800619950
21. LeBlanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J InternMed. 2007; 262(5):509-525.
https://doi.org/10.1111/j.1365-2796.2007.01844.x
PMid:17949362
22. Nakamizo A. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005; 65(8):3307-3318.
PMid:15833864
23. Lu Y R, Yuan Y, Wang X J, et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2008; 7(2):245-251.
https://doi.org/10.4161/cbt.7.2.5296
PMid:18059192
24. Khakoo AY, Pati S, Anderson SA, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J ExpMed. 2006; 203(15):1235-1247.
https://doi.org/10.1084/jem.20051921
PMid:16636132 PMCid:PMC2121206
25. Serakinci N, Guldberg P, Burns JS, et al. Adult human mesenchymal stem cell as target for neoplastic transformation. Oncogene. 2004; 23(29):5095-5098.
https://doi.org/10.1038/sj.onc.1207651
PMid:15107831
26. Rubio D, Garcia-Castro J, Martín M C. Spontaneous Human Adult Stem Cell Transformation. Cancer Res. 2005; 65(8):3035-3039.
PMid:15833829
27. Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69(13):5331-5339.
https://doi.org/10.1158/0008-5472.CAN-08-4630
PMid:19509230
28. Zhou B-B S, Zhang H, Damelin M, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. NatureReviewsDrugDiscovery. 2009; 86:806-823.
https://doi.org/10.1038/nrd2137
PMid:19794444
29. Guo W, Lasky J L, Wu H, et al. Cancer stem cells. PediatrRes. 2006; 59(4):59-64.
https://doi.org/10.1203/01.pdr.0000203592.04530.06
30. Yi S, Nan KJ. Tumour-initiating stem cells in liver. Cancer Biol. Ther. 2008; 7(3):325-330.
https://doi.org/10.4161/cbt.7.3.5527
PMid:18285703
31. Schatton T, Frank, N Y, Frank M H. Identification and targeting of cancer stem cells. Bio essays. 2009; 31(10):1038-1049.
https://doi.org/10.1002/bies.200900058
32. Adhikari AS, Agarwal N, Wood BM, et al. CD117 and Stro-1identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res. 2010; 70(11): 4602-4612.
https://doi.org/10.1158/0008-5472.CAN-09-3463
PMid:20460510 PMCid:PMC3139225
33. Fujii H, Honoki K, Tsujiuchi T, et al. Sphere-forming stem like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 2009; 34(5):1381-1386.
PMid:19360350
34. Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2012; 22(1):62-77.
https://doi.org/10.1038/cr.2011.157
PMid:21931359 PMCid:PMC3351912
35. Kim SG, Jeon CH, Suh HS, et al. P-glycoprotein expression in extracellular matrix formation of chondrogenic differentiation of human adult stem cells. Cell Biol Int. 2007; 31(9):1042-148.
https://doi.org/10.1016/j.cellbi.2007.03.018
PMid:17468018
36. Mohseny AB, Hogendoorn PC. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells. 2011; 29(3):397-403.
https://doi.org/10.1002/stem.596
PMid:21425403
37. Tang N, Song WX, Luo J, et al. Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res. 2008; 466(9):2114-2130.
https://doi.org/10.1007/s11999-008-0335-z
PMid:18563507 PMCid:PMC2492997
38. Boeuf S, Kunz P, Hennig T, et al. A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. J Pathol. 2008; 216(2):158-166.
https://doi.org/10.1002/path.2389
PMid:18702172
39. Kamilova TA, Novik AA, Tsygan VN. Vvedenie v molekuliarnuiu biologiiu kantserogeneza [Introduction to the molecular biology of carcinogenesis]. GoetarMed. M., 2004. 222 p.
PMid:15188736
40. Funes J.M. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci U S A. 2007; 104(15): 6223-6228.
https://doi.org/10.1073/pnas.0700690104
PMid:17384149 PMCid:PMC1851087
41. Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res. 2012; 22(1):62-77.
https://doi.org/10.1038/cr.2011.157
PMid:21931359 PMCid:PMC3351912

Mamchur AA. Рossibilities for involvement of transformed multipotent mesenchymal stem cell in sarcomogenesis as tumor-initiating cells. Cell and Organ Transplantology. 2014; 2(2):132-135. doi: 10.22494/COT.V2I2.30

 

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.