Stem cells for neonatal hypoxic-ischemic injury

Home/2013, Vol. 1, No. 1/Stem cells for neonatal hypoxic-ischemic injury

Cell and Organ Transplantology. 2013, 1(1): 10-13.
DOI: 10.22494/COT.V1I1.44  

Stem cells for neonatal hypoxic-ischemic injury

Carroll James
Georgia Health Sciences University, Augusta, GА, USA

 Abstract
Many types of adult stem cells have been used in pre-clinical situations to treat experimental hypoxic-ischemic (HI) injury in neonatal animals. Numerous laboratory reports have appeared in the literature indicating that this treatment is beneficial, and the route of cell administration does not appear to be critical. The success of treatment occurs with administration soon after the injury, and this early administration of the cells proximate to the time of injury appears to be decisive. The mechanism of benefit relates to preservation of intrinsic neurons at the site of injury rather than cell replacement by the administered cells. There are few clinical studies, and most positive reports are either from uncontrolled studies or anecdotal. Given the preclinical success with treatment, well-thought-out clinical studies need to be initiated in acutely brain injured neonates.

Full Text PDF (eng) Full text PDF (ua)

 

1. Carroll J, Borlongan C. Adult Stem Cell Therapy for Acute Brain Injury in Children. CNS & Neurological Disorders Drug Targets. 2008; 7:1-8.
https://doi.org/10.2174/187152708786441812
2. Keene C, Ortiz-Gonzalez X, Jiang Y, et al. Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant. 2003; 12(3):201-13.
https://doi.org/10.3727/000000003108746768
PMid:12797375
3. Yamagata M, Yamamoto A, Kako E, et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic injury in neonatal mice. Stroke. 2013; 44(2):551-554.
https://doi.org/10.1161/STROKEAHA.112.676759
PMid:23238858
4. Lee I, Jung K, Kim M et al. Neural stem cells: properties and therapeutic potentials for hypoxic-ischemic brain injury in newborn infants. Pediatrics International. 2010; 52(6):855-65.
https://doi.org/10.1111/j.1442-200X.2010.03266.x
PMid:21029253
5. Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013; 140(12):2257-67.
https://doi.org/10.1242/dev.092551
PMid:23715538
6. Bartley J, Soltau T, Wimbourne H, et al. BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury. BMC Neuroscience. 2005; 6:15.
https://doi.org/10.1186/1471-2202-6-15
PMid:15743533 PMCid:PMC555560
7. Donega V, van Velthoven CT, Nijboer CH, et al. The endogenous regenerative capacity of the damaged newborn brain: neurogenesis with mesenchymal stem cell treatment. J Cerebral Blood Flow & Metabolism. 2013; 33(5):625-34.
https://doi.org/10.1038/jcbfm.2013.3
PMid:23403379 PMCid:PMC3652688
8. Rice J, Vannucci R, Brierly J. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981; 9(2):131-41.
https://doi.org/10.1002/ana.410090206
PMid:7235629
9. Donega V, van Velthoven C, Nijboer C, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS ONE. 2013; 8(1):51253.
https://doi.org/10.1371/journal.pone.0051253
PMid:23300948 PMCid:PMC3536775
10. Rosenblum S, Wang N, Smith T, et al. Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation. Stroke. 2012; 43(6):1624-31.
https://doi.org/10.1161/STROKEAHA.111.637884
PMid:22535265
11. Park S, Koh SE, Maeng S, et al. Neural progenitors generated from mesenchymal stem cells of first-trimester human placenta matured in the hypoxic-ischemic rat brain and mediated restoration of locomotor activity. Placenta. 2011; 32(3):269-76.
https://doi.org/10.1016/j.placenta.2010.12.027
PMid:21300404
12. Lee J, Kim B, Jo C, et al. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatric research. 2010; 67(1):42-6.
https://doi.org/10.1203/PDR.0b013e3181bf594b
PMid:19745781
13. de Paula S, Greggio S, Marinowic D, et al. The dose-response effect of acute intravenous umbilical cord blood cells on brain damage and neonatal hypoxia-ischemia. Neuroscience. 2012; 210:431-41.
https://doi.org/10.1016/j.neuroscience.2012.03.009
PMid:22441035
14. Kim ES, Ahn SY, Im GH et al. Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatr Res. 2012, 72(3):277-84.
https://doi.org/10.1038/pr.2012.71
PMid:22669296
15. Meier C, Middelanis J, Wasielewski B, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatric Research. 2006; 59(2):244-49.
https://doi.org/10.1203/01.pdr.0000197309.08852.f5
PMid:16439586
16. Yasuhara T, Matsukawa N, Yu G, et al. Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells of neonatal hypoxic-ischemic injury: targeting the hippocampus. Reviews in the Neurosciences. 2006; 17(1-2):215-25.
https://doi.org/10.1515/REVNEURO.2006.17.1-2.215
PMid:16703953
17. Yasuhara T, Hara K, Maki M, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cerebral Blood Flow and Metabolism. 2008; 28:1804-10.
https://doi.org/10.1038/jcbfm.2008.68
PMid:18594556 PMCid:PMC2587070
18. van Velthoven C, Kavelaars A, van Bel F, Heijnen C. Nasal administration of stem cells: a promising novel route for ischemic brain damage. Pediatric Research. 2010; 68(5):419-22.
https://doi.org/10.1203/pdr.0b013e3181f1c289
19. Carroll J. Human cord blood for the hypoxic-ischemic neonate. Pediatr Res. 2012; 71(4 Pt 2):459-63.
https://doi.org/10.1038/pr.2011.53
PMid:22278181 PMCid:PMC3640287
20. Van Velthoven C, Kavelaars A, Heijnen C. Mesenchymal stem cells as a treatment for neonatal ischemia. Pediatr Res. 2012; 71(4 Pt 2):474-81.
https://doi.org/10.1038/pr.2011.64
PMid:22430383
21. Erices A, Conget P, Minguell J. Mesenchymal progenitor cell in human umbilical cord blood. British Journal of Haematology. 2000; 109(1):235-42.
https://doi.org/10.1046/j.1365-2141.2000.01986.x
PMid:10848804
22. Zhao L, Duan W, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology. 2002; 174(1):11-20.
https://doi.org/10.1006/exnr.2001.7853
PMid:11869029
23. van Velthoven C, Kavalaars A, van Bel F, et al. Mesenchymal stem cell transplantation changes the gene expression of the neonatal ischemic brain. Brain, Behavior & Immunity. 2011; 25(7):1342-48.
https://doi.org/10.1016/j.bbi.2011.03.021
PMid:21473911
24. Daadi M, Davis A, Arac A, et al. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke. 2010; 41(3):516-23.
https://doi.org/10.1161/STROKEAHA.109.573691
PMid:20075340
25. Wasielewski B, Jensen A, Roth-Harer A, et al. Neuroglial activation and CX43 expression are reduced upon transplantation of human umbilical cord blood cells after perinatal hypoxic-ischemic injury. Brain Res. 2012; 1487:39-53.
https://doi.org/10.1016/j.brainres.2012.05.066
PMid:22796290
26. Borlongan C, Lind J, Dillon-Carter O, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004; 1010(1-2):108-16.https://doi.org/10.1016/j.brainres.2004.02.072
PMid:15126123
27. Robinson S, Niu T, de Lima M, et al. Ex vivo expansion of umbilical cord blood. Cytotherapy. 2005; 7(3):243-50.
https://doi.org/10.1080/14653240510027172
PMid:16081350
28. van Velthoven C, van de Lootj Y, Kavalaars A, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Annals of Neurology. 2012; 71(6):785-96.
https://doi.org/10.1002/ana.23543
PMid:22718545
29. Luan Z, Liu W, Qu S, et al. Treatment of newborns with severe injured brain with transplantation of human neural precursor cells. Zhonghua Erke Zazhi. 2011; 49(6):445-49.
PMid:21924058
30. Luan Z, Yin G, Hu X, et al. Treatment of an infant with severe neonatal hypoxic-ischemic encephalopathy sequelae with transplantation of human neural stem cells into cerebral ventricle. Zhonghua Erke Zazhi. 2005; 43(8):580-83.
PMid:16191266

Carroll J. Stem cells for neonatal hypoxic-ischemic injury. Cell and Organ Transplantology. 2013; 1(1):10-13. doi: 10.22494/COT.V1I1.44

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.