Effects of tissue neurotransplantation on sceletal muscle tone restoration after experimental mechanical injury of the cerebellum

Home/2013, Vol. 1, No. 1/Effects of tissue neurotransplantation on sceletal muscle tone restoration after experimental mechanical injury of the cerebellum

Cell and Organ Transplantology. 2013; 1(1):81-86.
DOI: 10.22494/COT.V1I1.48

Effects of tissue neurotransplantation on sceletal muscle tone restoration after experimental mechanical injury of the cerebellum

Tsymbalyuk V.I.1, Medvediev V.V.2, Senchyk Yu.Yu.3
1A. P. Romodanov State Institute of Neurosurgery NAMS Ukraine, Kyiv, Ukraine
2O. O. Bogomolets National Medical University, Kyiv, Ukraine
3Kyiv City Emergency Hospital, Kyiv, Ukraine

Abstract
This work aimed to conduct a comparative study of the restorative effects of transplantation of fetal neural tissue (FNT), olfactory bulb tissue (OBT) and fetal kidney (FK) on the dynamics of muscle hypotonia after cerebellar hemisphere injury in the adult rats. Beam walking test (BWT) allowed detect at least three degrees of hypotonia which correspond to 2, 3, and 4 points. The authors selected animals with function index (FI) by BWT scale strictly lesser than 4 points on the 3rd day after injury. Moderate hypotonia was associated with FI 3 points, severe – 2 points, and mild-4 points. Major differences in the dynamics of the restorative process across study groups were detected at the first month of study: slow recovery of statics and coordination (control); fast recovery (during first 9 days, FK, OBT and FNT groups) that underwent changes by its slow increase during 9th–33rd day. Mild hypotonia in the control group showed itself by the end of the 1st month and on the 9th day in the FK, OBT and FNT groups. Normotony was observed on the 21st (group FNT) and 30th day (groups FK and OBT). These data suggest that neurotransplantation has a significant effect on muscle tone improvement after cerebellar injury, depending on the type of graft.

Full Text PDF (eng) Full text PDF (ua)

1. Maynard F, Karunas R, Waring P. Epidemiology of spasticity following traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 1990; 71:566–9.
PMid:2369291
2. Sommerfeld D, Eek E, Svensson A, et al. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke. 2004; 35:134–9.
https://doi.org/10.1161/01.STR.0000105386.05173.5E
PMid:14684785
3. Rizzo M, Hadjimichael O, Preiningerova J, Vollmer T. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult Scler. 2004; 10:589–95.
https://doi.org/10.1191/1352458504ms1085oa
PMid:15471378
4. Nielsen J, Crone C, Hultborn H. The spinal pathophysiology of spasticity – from a basic science point of view. Acta Physiologica. 2007; 189(2):171–80.
https://doi.org/10.1111/j.1748-1716.2006.01652.x
PMid:17250567
5. Медведев В. В. Вырождение биологических систем. В. И. Цымбалюк, В. В. Медведев / Спинной мозг. Элегия надежды. Винница: Нова Книга. 2010:541–635.
6. Rank M, Li X, Bennett D, Gorassin M. Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury. J. Neurophysiol. 2007; 97:3166–80.
https://doi.org/10.1152/jn.01168.2006
PMid:17360828 PMCid:PMC2117896
7. Murray K, Nakae A, Stephens M, et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5–HT2C receptors. Nat Med. 2010; 16:694-700.
https://doi.org/10.1038/nm.2160
PMid:20512126 PMCid:PMC3107820
8. Ren LQ, Wienecke J, Chen M, et al. The time course of serotonin 2c receptor expression after spinal transection of rats: an immunohistochemical study. Neurosci. 2013; 236:31–46.
https://doi.org/10.1016/j.neuroscience.2012.12.063
PMid:23337537
9. Newton B, Hamill R. The morphology and distribution of rat serotoninergic intraspinal neurons: an immunohistochemical study. Brain Res Bull. 1988; 20:349–60.
https://doi.org/10.1016/0361-9230(88)90064-0
10. Heckman C, Enoka R. Motor Unit. Comprehensive Physiology. 2012; 2:2629–82.
https://doi.org/10.1002/cphy.c100087
11. Haines D, Mihailoff G, Bloedel J. The Cerebellum. Fundamental neuroscience ed. D.E. Haines. New York: Churchill Livingstone. 2002:370–88.
12. Hyder A, Wunderlich C, Puvanachandra P, et al. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007; 22(5):341–53.
PMid:18162698
13. Крылов ВВ, Талыпов АЭ. Повреждения структур задней черепной ямки. Неврол журнал. 2002; 7(6):4–9.
14. Taniura S, Okamoto H. Traumatic cerebellar infarction. J Trauma. 2008; 64:1674.
https://doi.org/10.1097/01.ta.0000233741.95875.6c
PMid:18277270
15. Takeuchi S, Takasato Y, Masaoka H, Hayakawa T. Traumatic intra–cerebellar haematoma: study of 17 cases. Br J Neurosurg. 2011; 25(1):62–7.
https://doi.org/10.3109/02688697.2010.500410
PMid:20649395
16. Spanos G, Wilde E, Bigler E, et al. Cerebellar atrophy after moderate–to–severe pediatric traumatic brain injury. Am J Neuroradiol. 2007; 28(3):537–42.
PMid:17353332
17. Louis E, Lynch T, Ford B, et al. Delayed-onset cerebellar syndrome. Arch Neurol. 1996; 53(5):450–54.
https://doi.org/10.1001/archneur.1996.00550050080027
PMid:8624221
18. Sato M, Chang E, Igarashi T, Noble L. Neuronal injury and loss after traumatic brain injury: time course and regional variability. Brain Res. 2001; 917(1):45–54.
https://doi.org/10.1016/S0006-8993(01)02905-5
19. Gale S. D, Baxter L, Roundy N, Johnson S. Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. J Neurol. Neurosurg Psychiatry. 2005; 76(7):984–88.
https://doi.org/10.1136/jnnp.2004.036210
PMid:15965207 PMCid:PMC1739692
20. Ide H, Terado Y, Tokiwa S, et al. Novel germ line mutation p53–P177R in adult adrenocortical carcinoma producing neuron–specific enolase as a possible marker. Jpn J Clin Oncol. 2010; 40(8):815-8.
https://doi.org/10.1093/jjco/hyq045
PMid:20421238
21. Зильберштейн ХН. Механическая травма черепа и головного мозга. Многотомное руководство по патологической анатомии / отв. ред. А. И. Струков и др. – Т. 2: Патологическая анатомия нервной системы / ред. Б. С. Хоминский. – М. : Медгиз, 1962:336–42.
22. Andriessen T, Jacobs B, Vos P. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 2010; 14(10):2381–92.
https://doi.org/10.1111/j.1582-4934.2010.01164.x
PMid:20738443 PMCid:PMC3823156
23. Bramlett H, Dietrich W. Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. J Cereb. Blood Flow Metab. 2004; 24:133–50.
https://doi.org/10.1097/01.WCB.0000111614.19196.04
PMid:14747740
24. Ai J, Liu E, Park E, Baker A. Structural and functional alterations of cerebellum following fluid percussion injury in rats. Exp. Brain Res. 2007; 177:95–112.
https://doi.org/10.1007/s00221-006-0654-9
PMid:16924485
25. Seoa TB, Kima BK, Koa IG, et al. Effect of treadmill exercise on Purkinje cell loss and astrocytic reaction in the cerebellum after traumatic brain injury. Neurosci. Lett. 2010; 481:178–82.
https://doi.org/10.1016/j.neulet.2010.06.087
PMid:20603186
26. Potts M, Adwanikar H, Noble–Haeusslein L. Models of traumatic cerebellar injury. The Cerebellum. 2009; 8:211–21.
https://doi.org/10.1007/s12311-009-0114-8
PMid:19495901 PMCid:PMC2734258
27. Igarashi T, Potts M, Noble–Haeusslein L. Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp Neurol. 2007; 203(1):258–68.
https://doi.org/10.1016/j.expneurol.2006.08.030
PMid:17045589
28. Park E, McKnight S, Ai J, Baker A. Purkinje cell vulnerability to mild and severe forebrain head trauma. J. Neuropathol. Exp. Neurol. 2006; 65(3):226–34.
https://doi.org/10.1097/01.jnen.0000202888.29705.93
PMid:16651884
29. Ai J, Baker A. Presynaptic excitability as a potential target for the treatment of the traumatic cerebellum. Pharmacology. 2004; 71(4):192–8.
https://doi.org/10.1159/000078085
PMid:15240995
30. Marin-Teva J, Dusart I, Colin C, et al. Microglia promote the death of developing Purkinje cells. Neuron. 2004; 41:535–47.
https://doi.org/10.1016/S0896-6273(04)00069-8
31. Viscomi M, Florenzano F, Latini L, Molinari M. Remote cell death in the cerebellar system. The Cerebellum. 2009; 8:184–91.
https://doi.org/10.1007/s12311-009-0107-7
PMid:19387761
32. Hains B, Black J, Waxman S. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol. 2003; 462(3):328–41.
https://doi.org/10.1002/cne.10733
PMid:12794736
33. Rossi F, Glanola S, Corvetti L. The strange case of Purkinje axon regeneration and plasticity. The Cerebellum. 2006; 5:174–82.
https://doi.org/10.1080/14734220600786444
PMid:16818392
34. Buffo A, Holtmaat A, Savio T, et al. Targeted overexpression of the neurite growth–associated protein B–50/GAP–43 in cerebellar Purkinje cells induces sprouting after axotomy, but not axon regeneration into growth–permissive transplants. J Neurosci. 1997; 17:8778–91.
PMid:9348347
35. Chaiksuksunt V, Zhang Y, Anderson P, et al. Axonal regeneration from CNS neurons in the cerebellum and brainstem of adult rats: correlation with the patterns of expression and distribution of messenger RNAs for L1, CHL1, c–Jun and growth–associated protein–43. Neuroscience. 2000; 100:87–108.
https://doi.org/10.1016/S0306-4522(00)00254-2
36. Gianola S, Rossi F. Long–term injured Purkinje cells are competent for terminal arbour growth, but remain unable to sustain stem axon regeneration. Exp. Neurol. – 2002. – 176:25–40.
37. Li J, Imitola J, Snyder E, Sidman R. Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006; 26(30):7839–48.
https://doi.org/10.1523/JNEUROSCI.1624-06.2006
PMid:16870729
38. Pagano S, Impagnatiello F, Girelli M, et al. Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem. Cells. 2000; 18(4):295–300.
https://doi.org/10.1634/stemcells.18-4-295
PMid:10924096
39. Ромоданов АП, Копьев ОВ, Цымбалюк ВИ, и др. Влияние трансплантации эмбрионального неокортекса на выживаемость крыс после тяжелой черепно–мозговой травмы. Третий Тбилисский междунар. симпозиум “Функциональная нейрохирургия” (28–30 мая 1990 г.): тезисы докл. – Тбилиси, 1990. – С. 247.
40. Цимбалюк ВІ, Сутковий ДА, Троян ОІ. Вплив трансплантації фетальної нервової тканини на активність процесів перекисного окислення ліпідів та антиоксидантного захисту у віддалений період експериментальної тяжкої черепно–мозкової травми. Укр нейрохірург журнал. 2001; 1:109–14.
41. Цымбалюк ВИ, Щерба ИН, Гордиенко ОВ. Влияние трансплантации эмбриональной нервной ткани на динамику отека головного мозга при экспериментальной черепно–мозговой травме. Нейрофизиология. 1998; 30(3):206–11.
42. Пат. UA №49196, МПК А61В17/00. Спосіб моделювання у експерименті локальної дозованої черепно–мозкової травми гемісфер мозочку у щурів, що є методом моделювання експериментальної черепно–мозкової травми / Цимбалюк В.І, Сенчик Ю.Ю, Медведєв В.В. – Заявл. 02.10.2009; Опубл. 26.04.2010, Бюл. №8.
43. Goldstein L, Davis J. Beam–walking in rats: Studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods. 1990; 31:101–07.
https://doi.org/10.1016/0165-0270(90)90154-8
44. Цимбалюк В. І, Лісяний М. І, Семенова В. М. та ін. Вплив різних видів нейротрансплантації на перебіг травми мозочка у щурів. Журнал НАМН України. 2013; 19(2):171-83.
45. Filip P, Lungu O, Bareš M. Dystonia and the cerebellum: A new field of interest in movement disorders?. Clin. Neurophysiol. 2013, Feb 17 [Epub. ahead of print].
https://doi.org/10.1016/j.clinph.2013.01.003
PMid:23422326
  •  

Tsymbalyuk VI, Medvediev VV, Senchyk YuYu.  Effects of tissue neurotransplantation on sceletal muscle tone restoration after experimental mechanical injury of the cerebellum. Cell and Organ Transplantology. 2013; 1(1):81-86. doi: 10.22494/COT.V1I1.48

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.