Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia

Home/2022, Vol. 10, No. 2/Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia

Cell and Organ Transplantology. 2022; 10(2):in press.
DOI: 10.22494/cot.v10i2.143

Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia

Kyryk V.1,2, Ustymenko A.1,2, Lutsenko T.1,2, Klymenko P.1,2, Tsupykov O.1,3

  • 1Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine 
  • 2D. F. Chebotarev State Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 3Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine

Abstract

Critical limb ischemia of the is a serious disease that threatens a significant decrease in working ability and disability of patients. Cell therapy may be useful in correcting the endothelial dysfunction that accompanies this disorder.
The aim of study was to evaluate the effectiveness of local transplantation of mouse aortic endothelial cells (MAECs) in a model of critical limb ischemia in mice.
Materials and methods. Critical limb ischemia in FVB mice was modeled by femoral artery ligation. The primary culture of endothelial cells was obtained from the murine aortic intima. The endothelial phenotype of cells for the expression of CD31, CD38 and CD309 markers was confirmed by flow cytometry and 1•106 MAECs were transplanted intramuscularly into ischemic limb. Tissue perfusion was assessed by laser Doppler flowmetry as well as descriptive histology was used to analyze changes in ischemic muscle after cell transplantation compared to the control group.
Results. After MAECs transplantation in animals with modeled critical limb ischemia, the skin of the foot kept pink color and the corresponding temperature of the healthy limb without signs of necrosis of the distal phalanges in contrast to animals of the control group. According to laser Doppler flowmetry data, a significant difference (p ≤ 0.05) in perfusion of ischemic and sham-operated limbs in animals of the control group remained at the level of Δ = 45.7 ± 13.1 %. In animals after MAECs transplantation, the difference of these indicators between limbs was only Δ = 14.0 ± 8.23 % and was not statistically significant. A histological examination of muscle tissue after MAECs transplantation demonstrated the signs of compensatory processes characterized by hyperplasia and hypertrophy of myocyte’s nuclei and lightening of the nucleoplasm with well-defined nucleoli in some myofibrils. In the cytoplasm of myocytes, intermediate Z-discs were clearly visualized, and the number of myofibrils in muscle fibers increased.
Conclusion. In animals with model of critical limb ischemia, the transplantation of aorta-derived endothelial cells recover the perfusion of ischemic limbs and improve the histological indicators of muscle tissue.

Key words: critical limb ischemia; mouse aortic endothelial cells; cell transplantation; tissue perfusion; laser Doppler flowmetry

 

1. Novo S, Coppola G, Milio G. Critical limb ischemia: definition and natural history. Curr Drug Targets Cardiovasc Haematol Disord. 2004; 4(3):219-25. https://doi.org/10.2174/1568006043335989
https://doi.org/10.2174/1568006043335989
PMid:15379613
2. Shu J, Santulli G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 2018; 275:379-381. https://doi.org/10.1016/j.atherosclerosis.2018.05.033
https://doi.org/10.1016/j.atherosclerosis.2018.05.033
PMid:29843915 PMCid:PMC6113064
3. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Rutherford RB; TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007 Jun;26(2):81-157. https://doi.org/10.1016/j.jvs.2006.12.037
https://doi.org/10.1016/j.jvs.2006.12.037
PMid:17223489
4. Kinlay S. Management of Critical Limb Ischemia. Circ Cardiovasc Interv. 2016 Feb;9(2):e001946. https://doi.org/10.1161/CIRCINTERVENTIONS.115.001946
https://doi.org/10.1161/CIRCINTERVENTIONS.115.001946
PMid:26858079 PMCid:PMC4827334
5. Ding DC, Shyu WC, Lin SZ, Li H. The role of endothelial progenitor cells in ischemic cerebral and heart diseases. Cell Transplant. 2007;16(3):273-84. https://doi.org/10.3727/000000007783464777
https://doi.org/10.3727/000000007783464777
PMid:17503738
6. Beltrán-Camacho L, Rojas-Torres M, Durán-Ruiz MC. Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. International Journal of Molecular Sciences. 2021; 22(5):2335. https://doi.org/10.3390/ijms22052335
https://doi.org/10.3390/ijms22052335
PMid:33652743 PMCid:PMC7956816
7. Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022 Jul 26;13(1):345. https://doi.org/10.1186/s13287-022-03043-3
https://doi.org/10.1186/s13287-022-03043-3
PMid:35883198 PMCid:PMC9327195
8. Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018 Apr;39:27-34. https://doi.org/10.1016/j.coph.2018.01.005
https://doi.org/10.1016/j.coph.2018.01.005
PMid:29452987 PMCid:PMC6019642
9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964-967. https://doi.org/10.1126/science.275.5302.964
https://doi.org/10.1126/science.275.5302.964
PMid:9020076
10. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004 Aug 20;95(4):343-53. https://doi.org/10.1161/01.RES.0000137877.89448.78
https://doi.org/10.1161/01.RES.0000137877.89448.78
PMid:15321944
11. Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, Brittan M, Hadoke PW, Newby DE, Turner ML, Mills NL. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow.Stem Cells. 2013; 31:338-348. https://doi.org/10.1002/stem.1280
https://doi.org/10.1002/stem.1280
PMid:23165527
12. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106:1525-1531. https://doi.org/10.1182/blood-2005-04-1509
https://doi.org/10.1182/blood-2005-04-1509
PMid:15905185
13. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 2005;97:314-322. https://doi.org/10.1161/01.RES.0000177670.72216.9b
https://doi.org/10.1161/01.RES.0000177670.72216.9b
PMid:16020753
14. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, et al. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction.Eur Heart J. 2019; 40:2507-2520. https://doi.org/10.1093/eurheartj/ehz305
https://doi.org/10.1093/eurheartj/ehz305
PMid:31162546 PMCid:PMC6685329
15. Wang J, Niu N, Xu S, Jin ZG. A simple protocol for isolating mouse lung endothelial cells. Sci Rep. 2019 Feb 6;9(1):1458. https://doi.org/10.1038/s41598-018-37130-4
https://doi.org/10.1038/s41598-018-37130-4
PMid:30728372 PMCid:PMC6365507
16. Saito N, Shirado T, Funabashi-Eto H, Wu Y, Mori M, Asahi R, Yoshimura K. Purification and characterization of human adipose-resident microvascular endothelial progenitor cells. Sci Rep. 2022;12(1):1775. https://doi.org/10.1038/s41598-022-05760-4
https://doi.org/10.1038/s41598-022-05760-4
PMid:35110646 PMCid:PMC8811023
17. Ruck T, Bittner S, Epping L, Herrmann AM, Meuth SG. Isolation of primary murine brain microvascular endothelial cells. J Vis Exp. 2014 Nov 14;(93):e52204. https://doi.org/10.3791/52204
https://doi.org/10.3791/52204
PMid:25489873 PMCid:PMC4354020
18. Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Buhler L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res. 2016;349:291-301. https://doi.org/10.1016/j.yexcr.2016.10.024
https://doi.org/10.1016/j.yexcr.2016.10.024
PMid:27815020
19. Gumina DL, Su EJ. Endothelial Progenitor Cells of the Human Placenta and Fetoplacental Circulation: A Potential Link to Fetal, Neonatal, and Long-term Health. Front Pediatr. 2017 Mar 15;5:41. https://doi.org/10.3389/fped.2017.00041
https://doi.org/10.3389/fped.2017.00041
PMid:28361046 PMCid:PMC5350128
20. Crampton SP, Davis J, Hughes CC. Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 2007;(3):183. https://doi.org/10.3791/183
https://doi.org/10.3791/183
21. Legislation for the protection of animals used for scientific purposes http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm
22. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244-58. https://doi.org/10.1093/ilar.43.4.244
https://doi.org/10.1093/ilar.43.4.244
PMid:12391400
23. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T. A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb. 2005;12(3):138-42. https://doi.org/10.5551/jat.12.138
https://doi.org/10.5551/jat.12.138
PMid:16020913
24. Wang JM, Chen AF, Zhang K. Isolation and Primary Culture of Mouse Aortic Endothelial Cells. J Vis Exp. 2016 Dec 19;(118):52965. https://doi.org/10.3791/52965
https://doi.org/10.3791/52965
25. Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang IH, Kwon SM, Lee JS, Kim JH. Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta. 2013 Dec;1832(12):2136-44. https://doi.org/10.1016/j.bbadis.2013.08.002
https://doi.org/10.1016/j.bbadis.2013.08.002
PMid:23959047
26. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells. 2018 Feb;36(2):161-171. https://doi.org/10.1002/stem.2751
https://doi.org/10.1002/stem.2751
PMid:29226477
27. Park JJ, Kwon YW, Kim JW, Park GT, Yoon JW, Kim YS, Kim DS, Kwon SM, Bae SS, Ko K, Kim CS, Kim JH. Coadministration of endothelial and smooth muscle cells derived from human induced pluripotent stem cells as a therapy for critical limb ischemia. Stem Cells Transl Med. 2021 Mar;10(3):414-426. https://doi.org/10.1002/sctm.20-0132
https://doi.org/10.1002/sctm.20-0132
PMid:33174379 PMCid:PMC7900584
28. Amani S, Shahrooz R, Hobbenaghi R et al. Angiogenic effects of cell therapy within a biomaterial scaffold in a rat hind limb ischemia model. Sci Rep. 2021; 11, 20545. https://doi.org/10.1038/s41598-021-99579-0
https://doi.org/10.1038/s41598-021-99579-0
PMid:34654868 PMCid:PMC8519994
29. Wahid FSA, Ismail NA, Wan Jamaludin WF, Muhamad NA, Mohamad Idris MA, Lai NM. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis. Curr Stem Cell Res Ther. 2018;13(4):265-283. https://doi.org/10.2174/1574888X13666180313141416
https://doi.org/10.2174/1574888X13666180313141416
PMid:29532760
30. Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med. 2021 Sep;48(3):173. https://doi.org/10.3892/ijmm.2021.5006
https://doi.org/10.3892/ijmm.2021.5006
PMid:34278463 PMCid:PMC8285046
31. Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017 Apr 14;120(8):1326-1340. https://doi.org/10.1161/CIRCRESAHA.116.309045
https://doi.org/10.1161/CIRCRESAHA.116.309045
PMid:28096194
32. Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2019 May 21;10(1):140. https://doi.org/10.1186/s13287-019-1254-5
https://doi.org/10.1186/s13287-019-1254-5
PMid:31113463 PMCid:PMC6528204
33. Liotta F, Annunziato F, Castellani S, et al. Therapeutic Efficacy of Autologous Non-Mobilized Enriched Circulating Endothelial Progenitors in Patients With Critical Limb Ischemia – The SCELTA Trial. Circ J. 2018 May 25;82(6):1688-1698. https://doi.org/10.1253/circj.CJ-17-0720
https://doi.org/10.1253/circj.CJ-17-0720
PMid:29576595
34. Dong Z, Pan T, Fang Y, Wei Z, Gu S, Fang G, Liu Y, Luo Y, Liu H, Zhang T, et al. Purified CD34+cells versus peripheral blood mononuclear cells in the treatment of angiitis-induced no-option critical limb ischaemia: 12-Month results of a prospective randomised single-blinded non-inferiority trial. EBioMedicine. 2018;35:46-57. https://doi.org/10.1016/j.ebiom.2018.08.038
https://doi.org/10.1016/j.ebiom.2018.08.038
PMid:30172703 PMCid:PMC6156701
35. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007 Jan;119(1):59-70. https://doi.org/10.1097/01.prs.0000244830.16906.3f
https://doi.org/10.1097/01.prs.0000244830.16906.3f
PMid:17255657
36. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012 Feb 17;110(4):624-37. https://doi.org/10.1161/CIRCRESAHA.111.243386
https://doi.org/10.1161/CIRCRESAHA.111.243386
PMid:22343557 PMCid:PMC3382070
37. Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep. 2021 Mar 2;21(3):11. https://doi.org/10.1007/s11892-021-01378-4
https://doi.org/10.1007/s11892-021-01378-4
PMid:33651185 PMCid:PMC7925447

Kyryk V, Ustymenko A, Lutsenko T, Klymenko P, Tsupykov O. Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia. Cell Organ Transpl. 2022; 10(2):in press. doi:10.22494/cot.v10i2.143

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.