Cell and Organ Transplantology. 2022; 10(2):in press.
DOI: 10.22494/cot.v10i2.143
Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia
Kyryk V.1,2, Ustymenko A.1,2
, Lutsenko T.1,2, Klymenko P.1,2
, Tsupykov O.1,3
- 1Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- 2D. F. Chebotarev State Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
- 3Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
Abstract
Critical limb ischemia of the is a serious disease that threatens a significant decrease in working ability and disability of patients. Cell therapy may be useful in correcting the endothelial dysfunction that accompanies this disorder.
The aim of study was to evaluate the effectiveness of local transplantation of mouse aortic endothelial cells (MAECs) in a model of critical limb ischemia in mice.
Materials and methods. Critical limb ischemia in FVB mice was modeled by femoral artery ligation. The primary culture of endothelial cells was obtained from the murine aortic intima. The endothelial phenotype of cells for the expression of CD31, CD38 and CD309 markers was confirmed by flow cytometry and 1•106 MAECs were transplanted intramuscularly into ischemic limb. Tissue perfusion was assessed by laser Doppler flowmetry as well as descriptive histology was used to analyze changes in ischemic muscle after cell transplantation compared to the control group.
Results. After MAECs transplantation in animals with modeled critical limb ischemia, the skin of the foot kept pink color and the corresponding temperature of the healthy limb without signs of necrosis of the distal phalanges in contrast to animals of the control group. According to laser Doppler flowmetry data, a significant difference (p ≤ 0.05) in perfusion of ischemic and sham-operated limbs in animals of the control group remained at the level of Δ = 45.7 ± 13.1 %. In animals after MAECs transplantation, the difference of these indicators between limbs was only Δ = 14.0 ± 8.23 % and was not statistically significant. A histological examination of muscle tissue after MAECs transplantation demonstrated the signs of compensatory processes characterized by hyperplasia and hypertrophy of myocyte’s nuclei and lightening of the nucleoplasm with well-defined nucleoli in some myofibrils. In the cytoplasm of myocytes, intermediate Z-discs were clearly visualized, and the number of myofibrils in muscle fibers increased.
Conclusion. In animals with model of critical limb ischemia, the transplantation of aorta-derived endothelial cells recover the perfusion of ischemic limbs and improve the histological indicators of muscle tissue.
Key words: critical limb ischemia; mouse aortic endothelial cells; cell transplantation; tissue perfusion; laser Doppler flowmetry
1. Novo S, Coppola G, Milio G. Critical limb ischemia: definition and natural history. Curr Drug Targets Cardiovasc Haematol Disord. 2004; 4(3):219-25. https://doi.org/10.2174/1568006043335989 https://doi.org/10.2174/1568006043335989 PMid:15379613 |
||||
2. Shu J, Santulli G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 2018; 275:379-381. https://doi.org/10.1016/j.atherosclerosis.2018.05.033 https://doi.org/10.1016/j.atherosclerosis.2018.05.033 PMid:29843915 PMCid:PMC6113064 |
||||
3. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Rutherford RB; TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007 Jun;26(2):81-157. https://doi.org/10.1016/j.jvs.2006.12.037 https://doi.org/10.1016/j.jvs.2006.12.037 PMid:17223489 |
||||
4. Kinlay S. Management of Critical Limb Ischemia. Circ Cardiovasc Interv. 2016 Feb;9(2):e001946. https://doi.org/10.1161/CIRCINTERVENTIONS.115.001946 https://doi.org/10.1161/CIRCINTERVENTIONS.115.001946 PMid:26858079 PMCid:PMC4827334 |
||||
5. Ding DC, Shyu WC, Lin SZ, Li H. The role of endothelial progenitor cells in ischemic cerebral and heart diseases. Cell Transplant. 2007;16(3):273-84. https://doi.org/10.3727/000000007783464777 https://doi.org/10.3727/000000007783464777 PMid:17503738 |
||||
6. Beltrán-Camacho L, Rojas-Torres M, Durán-Ruiz MC. Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. International Journal of Molecular Sciences. 2021; 22(5):2335. https://doi.org/10.3390/ijms22052335 https://doi.org/10.3390/ijms22052335 PMid:33652743 PMCid:PMC7956816 |
||||
7. Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022 Jul 26;13(1):345. https://doi.org/10.1186/s13287-022-03043-3 https://doi.org/10.1186/s13287-022-03043-3 PMid:35883198 PMCid:PMC9327195 |
||||
8. Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018 Apr;39:27-34. https://doi.org/10.1016/j.coph.2018.01.005 https://doi.org/10.1016/j.coph.2018.01.005 PMid:29452987 PMCid:PMC6019642 |
||||
9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964-967. https://doi.org/10.1126/science.275.5302.964 https://doi.org/10.1126/science.275.5302.964 PMid:9020076 |
||||
10. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004 Aug 20;95(4):343-53. https://doi.org/10.1161/01.RES.0000137877.89448.78 https://doi.org/10.1161/01.RES.0000137877.89448.78 PMid:15321944 |
||||
11. Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, Brittan M, Hadoke PW, Newby DE, Turner ML, Mills NL. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow.Stem Cells. 2013; 31:338-348. https://doi.org/10.1002/stem.1280 https://doi.org/10.1002/stem.1280 PMid:23165527 |
||||
12. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2005;106:1525-1531. https://doi.org/10.1182/blood-2005-04-1509 https://doi.org/10.1182/blood-2005-04-1509 PMid:15905185 |
||||
13. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 2005;97:314-322. https://doi.org/10.1161/01.RES.0000177670.72216.9b https://doi.org/10.1161/01.RES.0000177670.72216.9b PMid:16020753 |
||||
14. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, et al. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction.Eur Heart J. 2019; 40:2507-2520. https://doi.org/10.1093/eurheartj/ehz305 https://doi.org/10.1093/eurheartj/ehz305 PMid:31162546 PMCid:PMC6685329 |
||||
15. Wang J, Niu N, Xu S, Jin ZG. A simple protocol for isolating mouse lung endothelial cells. Sci Rep. 2019 Feb 6;9(1):1458. https://doi.org/10.1038/s41598-018-37130-4 https://doi.org/10.1038/s41598-018-37130-4 PMid:30728372 PMCid:PMC6365507 |
||||
16. Saito N, Shirado T, Funabashi-Eto H, Wu Y, Mori M, Asahi R, Yoshimura K. Purification and characterization of human adipose-resident microvascular endothelial progenitor cells. Sci Rep. 2022;12(1):1775. https://doi.org/10.1038/s41598-022-05760-4 https://doi.org/10.1038/s41598-022-05760-4 PMid:35110646 PMCid:PMC8811023 |
||||
17. Ruck T, Bittner S, Epping L, Herrmann AM, Meuth SG. Isolation of primary murine brain microvascular endothelial cells. J Vis Exp. 2014 Nov 14;(93):e52204. https://doi.org/10.3791/52204 https://doi.org/10.3791/52204 PMid:25489873 PMCid:PMC4354020 |
||||
18. Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Buhler L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res. 2016;349:291-301. https://doi.org/10.1016/j.yexcr.2016.10.024 https://doi.org/10.1016/j.yexcr.2016.10.024 PMid:27815020 |
||||
19. Gumina DL, Su EJ. Endothelial Progenitor Cells of the Human Placenta and Fetoplacental Circulation: A Potential Link to Fetal, Neonatal, and Long-term Health. Front Pediatr. 2017 Mar 15;5:41. https://doi.org/10.3389/fped.2017.00041 https://doi.org/10.3389/fped.2017.00041 PMid:28361046 PMCid:PMC5350128 |
||||
20. Crampton SP, Davis J, Hughes CC. Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 2007;(3):183. https://doi.org/10.3791/183 https://doi.org/10.3791/183 |
||||
21. Legislation for the protection of animals used for scientific purposes http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm | ||||
22. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43(4):244-58. https://doi.org/10.1093/ilar.43.4.244 https://doi.org/10.1093/ilar.43.4.244 PMid:12391400 |
||||
23. Kobayashi M, Inoue K, Warabi E, Minami T, Kodama T. A simple method of isolating mouse aortic endothelial cells. J Atheroscler Thromb. 2005;12(3):138-42. https://doi.org/10.5551/jat.12.138 https://doi.org/10.5551/jat.12.138 PMid:16020913 |
||||
24. Wang JM, Chen AF, Zhang K. Isolation and Primary Culture of Mouse Aortic Endothelial Cells. J Vis Exp. 2016 Dec 19;(118):52965. https://doi.org/10.3791/52965 https://doi.org/10.3791/52965 |
||||
25. Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang IH, Kwon SM, Lee JS, Kim JH. Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta. 2013 Dec;1832(12):2136-44. https://doi.org/10.1016/j.bbadis.2013.08.002 https://doi.org/10.1016/j.bbadis.2013.08.002 PMid:23959047 |
||||
26. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells. 2018 Feb;36(2):161-171. https://doi.org/10.1002/stem.2751 https://doi.org/10.1002/stem.2751 PMid:29226477 |
||||
27. Park JJ, Kwon YW, Kim JW, Park GT, Yoon JW, Kim YS, Kim DS, Kwon SM, Bae SS, Ko K, Kim CS, Kim JH. Coadministration of endothelial and smooth muscle cells derived from human induced pluripotent stem cells as a therapy for critical limb ischemia. Stem Cells Transl Med. 2021 Mar;10(3):414-426. https://doi.org/10.1002/sctm.20-0132 https://doi.org/10.1002/sctm.20-0132 PMid:33174379 PMCid:PMC7900584 |
||||
28. Amani S, Shahrooz R, Hobbenaghi R et al. Angiogenic effects of cell therapy within a biomaterial scaffold in a rat hind limb ischemia model. Sci Rep. 2021; 11, 20545. https://doi.org/10.1038/s41598-021-99579-0 https://doi.org/10.1038/s41598-021-99579-0 PMid:34654868 PMCid:PMC8519994 |
||||
29. Wahid FSA, Ismail NA, Wan Jamaludin WF, Muhamad NA, Mohamad Idris MA, Lai NM. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis. Curr Stem Cell Res Ther. 2018;13(4):265-283. https://doi.org/10.2174/1574888X13666180313141416 https://doi.org/10.2174/1574888X13666180313141416 PMid:29532760 |
||||
30. Magenta A, Florio MC, Ruggeri M, Furgiuele S. Autologous cell therapy in diabetes associated critical limb ischemia: From basic studies to clinical outcomes (Review). Int J Mol Med. 2021 Sep;48(3):173. https://doi.org/10.3892/ijmm.2021.5006 https://doi.org/10.3892/ijmm.2021.5006 PMid:34278463 PMCid:PMC8285046 |
||||
31. Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017 Apr 14;120(8):1326-1340. https://doi.org/10.1161/CIRCRESAHA.116.309045 https://doi.org/10.1161/CIRCRESAHA.116.309045 PMid:28096194 |
||||
32. Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2019 May 21;10(1):140. https://doi.org/10.1186/s13287-019-1254-5 https://doi.org/10.1186/s13287-019-1254-5 PMid:31113463 PMCid:PMC6528204 |
||||
33. Liotta F, Annunziato F, Castellani S, et al. Therapeutic Efficacy of Autologous Non-Mobilized Enriched Circulating Endothelial Progenitors in Patients With Critical Limb Ischemia – The SCELTA Trial. Circ J. 2018 May 25;82(6):1688-1698. https://doi.org/10.1253/circj.CJ-17-0720 https://doi.org/10.1253/circj.CJ-17-0720 PMid:29576595 |
||||
34. Dong Z, Pan T, Fang Y, Wei Z, Gu S, Fang G, Liu Y, Luo Y, Liu H, Zhang T, et al. Purified CD34+cells versus peripheral blood mononuclear cells in the treatment of angiitis-induced no-option critical limb ischaemia: 12-Month results of a prospective randomised single-blinded non-inferiority trial. EBioMedicine. 2018;35:46-57. https://doi.org/10.1016/j.ebiom.2018.08.038 https://doi.org/10.1016/j.ebiom.2018.08.038 PMid:30172703 PMCid:PMC6156701 |
||||
35. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007 Jan;119(1):59-70. https://doi.org/10.1097/01.prs.0000244830.16906.3f https://doi.org/10.1097/01.prs.0000244830.16906.3f PMid:17255657 |
||||
36. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012 Feb 17;110(4):624-37. https://doi.org/10.1161/CIRCRESAHA.111.243386 https://doi.org/10.1161/CIRCRESAHA.111.243386 PMid:22343557 PMCid:PMC3382070 |
||||
37. Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep. 2021 Mar 2;21(3):11. https://doi.org/10.1007/s11892-021-01378-4 https://doi.org/10.1007/s11892-021-01378-4 PMid:33651185 PMCid:PMC7925447 |
Kyryk V, Ustymenko A, Lutsenko T, Klymenko P, Tsupykov O. Regenerative effects of mouse aortic endothelial cells in a murine model of critical limb ischemia. Cell Organ Transpl. 2022; 10(2):in press. doi:10.22494/cot.v10i2.143
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.