Stem cell therapy of myocarditis and cardiomyopathies: a promising strategy

Home/2022, Vol. 10, No. 2/Stem cell therapy of myocarditis and cardiomyopathies: a promising strategy

Cell and Organ Transplantology. 2022; 10(2):in press.
DOI: 10.22494/cot.v10i2.140

Stem cell therapy of myocarditis and cardiomyopathies: a promising strategy

Kovalenko V., Nesukay E., Cherniuk S., Kozliuk A.

  • M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine 

Abstract

The literature review is devoted to the analysis of modern data on the effectiveness of stem cell  transplantation in patients with non-coronary heart diseases: myocarditis, dilated cardiomyopathy, and systemic amyloidosis with heart damage. The results of experimental studies on laboratory animals and clinical trials concerning the use of various types of stem cells, their mechanisms of action and prospects for application in non-coronary heart diseases are presented. Emphasis is placed on the need for further randomized multicenter clinical trials, especially in patients with inflammatory myocardial injury, involving a large number of patients.

Key words: stem cells; cell transplantation; dilated cardiomyopathy; myocarditis; amyloidosis

 

1. Gabrielyan AV. Comparative estimation of the efficacy for the umbilical blood stem cells transplantation and partial resection of left ventriculus in patients, suffering dilatational cardiomyopathy. Clinical surgery. 2018; 85(5): 25-29. https://doi.org/10.26779/2522-1396.2018.05.25 [In Ukrainian].
https://doi.org/10.26779/2522-1396.2018.05.25
2. Ai JW, Liu Y, Liu CF, Pei B. Safety and efficacy of autologous bone marrow mesenchymal stem cells for dilated cardiomyopathy: a Meta-analysis. Zhongguo Zuzhi Gongcheng Yanjiu. 2017; 21(5):780-788. https://doi.org/10.3969/j.issn.2095-4344.2017.05.021
3. Bolli R, Perin EC, Willerson JT, et al. Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy Heart Failure Patients The CCTRN SENECA Trial. JACC:cardiooncology. 2020; 2(4):581-595. https://doi.org/10.1016/j.jaccao.2020.09.001
https://doi.org/10.1016/j.jaccao.2020.09.001
PMid:33403362 PMCid:PMC7781291
4. Browning S, Quillen K, Sloan JM, et al. Hematologic relapse in AL amyloidosis after high-dose melphalan and stem cell transplantation. Blood. 2017; 130(11):1383-1386. https://doi.org/10.1182/blood-2017-06-788729
https://doi.org/10.1182/blood-2017-06-788729
PMid:28698204
5. Butler J, Epstein SE, Greene SJ, et al. Intravenous Allogeneic Mesenchymal Stem Cells for Nonischemic Cardiomyopathy Safety and Efficacy Results of a Phase II-A Randomized Trial. Circulation Research. 2017; 120:332-340. https://doi.org/10.1161/CIRCRESAHA.116.309717
https://doi.org/10.1161/CIRCRESAHA.116.309717
PMid:27856497
6. Cibeira MT, Sanchorawala V, Seldin DC, et al. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421patients. Blood. 2011; 118:4346-4352. https://doi.org/10.1182/blood-2011-01-330738
https://doi.org/10.1182/blood-2011-01-330738
PMid:21828140 PMCid:PMC3204906
7. D’Souza A, et al. Improved outcomes after autologous hematopoietic cell transplantation for light chain amyloidosis: a Center for International Blood and Marrow Transplant Research Study. J Clin Oncol. 2015; 33:3741-3749. https://doi.org/10.1200/JCO.2015.62.4015
https://doi.org/10.1200/JCO.2015.62.4015
PMid:26371138 PMCid:PMC4737858
8. DeFilipp Z, Duarte RF, Snowden JA, et al. Metabolic syndrome and cardiovascular disease following hematopoietic cell transplantation: screening and preventive practice recommendations from CIBMTR and EBMT. Bone Marrow Transplant. 2017; 52(2):173-182. https://doi.org/10.1038/bmt.2016.203
https://doi.org/10.1038/bmt.2016.203
PMid:27548466 PMCid:PMC5288134
9. Fitzgerald BT, Bashford J, Scalia GM. The return of the normal heart: resolution of cardiac amyloidosis after chemotherapy and bone marrow transplantation, Heart Lung Circ. 2013; 22:655-660. https://doi.org/10.1016/j.hlc.2013.01.013
https://doi.org/10.1016/j.hlc.2013.01.013
PMid:23474152
10. Grogan M, Gertz M, McCurdy A, et al. Long term outcomes of cardiac transplant for immunoglobulin light chain amyloidosis: The Mayo Clinic experience. World J Transplant. 2016; 6(2):380-388. https://doi.org/10.5500/wjt.v6.i2.380
https://doi.org/10.5500/wjt.v6.i2.380
PMid:27358783 PMCid:PMC4919742
11. Gu X, Li Y, Chen K, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway. J Cell Mol Med. 2020; 24:7515-7530. https://doi.org/10.1111/jcmm.15378
https://doi.org/10.1111/jcmm.15378
PMid:32424968 PMCid:PMC7339183
12. Guo Y, Yu Y, Hu S, et al. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death and Disease. 2020; 11:349 https://doi.org/10.1038/s41419-020-2542-9
https://doi.org/10.1038/s41419-020-2542-9
PMid:32393744 PMCid:PMC7214402
13. Hare JM, DiFede DL, Rieger AC, et al. Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy POSEIDON-DCM Trial. JACC. 2017; 69(5):526-537. https://doi.org/10.1016/j.jacc.2016.11.009
https://doi.org/10.1016/j.jacc.2016.11.009
PMid:27856208 PMCid:PMC5291766
14. Hoeeg C, Frljak S, Qayyum AA, et al. Efficacy and Mode of Action of Mesenchymal Stem Cells in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review Biomedicines 2020; 8:570. https://doi.org/10.3390/biomedicines8120570
https://doi.org/10.3390/biomedicines8120570
PMid:33291410 PMCid:PMC7762005
15. Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First Experience in Humans Using Adipose Tissue-Derived Regenerative Cells in the Treatment of Patients With ST-Segment Elevation Myocardial Infarction. JACC. 2012; 59 (5):539-543. https://doi.org/10.1016/j.jacc.2011.09.065
https://doi.org/10.1016/j.jacc.2011.09.065
PMid:22281257
16. Imperlini E, Gnecchi M, Rognoni P, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Scientific Reports. 2017; 7(1):15661. https://doi.org/10.1038/s41598-017-15424-3
https://doi.org/10.1038/s41598-017-15424-3
PMid:29142197 PMCid:PMC5688098
17. Janssens SP. Mesenchymal Cell Therapy for Dilated Cardiomyopathy. Time to Test the Water. JACC. 2017; 69(5):538-540. https://doi.org/10.1016/j.jacc.2016.11.044
https://doi.org/10.1016/j.jacc.2016.11.044
PMid:28153109
18. Jie B, Zhang X, Wu X, Xin Y, Liu Y, Guo Y. Neuregulin-1 suppresses cardiomyocyte apoptosis by activating PI3K/Akt and inhibiting mitochondrial permeability transition pore. Molecular and cellular biochemistry. 2012; 370:35-43. https://doi.org/10.1007/s11010-012-1395-7
https://doi.org/10.1007/s11010-012-1395-7
PMid:22886427
19. Jordan TL, Maar K, Redhage KR, et al. Light Chain Amyloidosis induced inflammatory changes in Cardiomyocytes and Adipose Derived Mesenchymal Stromal Cells. Leukemia. 2020; 34(5):1383-1393. https://doi.org/10.1038/s41375-019-0640-4
https://doi.org/10.1038/s41375-019-0640-4
PMid:31796914 PMCid:PMC7196017
20. Karantalis V, Hare JM. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease. Circ Res. 2015; 116:1413-1430. https://doi.org/10.1161/CIRCRESAHA.116.303614
https://doi.org/10.1161/CIRCRESAHA.116.303614
PMid:25858066 PMCid:PMC4429294
21. Kastritis E, Anagnostopoulos A, Roussou M, et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica. 2007; 92(10):1351-1358. https://doi.org/10.3324/haematol.11325
https://doi.org/10.3324/haematol.11325
PMid:18024372
22. Kim JY, Kim DH, Kim JH, et al. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell death and differentiation. 2012
https://doi.org/10.1038/cdd.2011.140
PMid:22015609 PMCid:PMC3307982
19(4): 680-691. https://doi.org/10.1038/cdd. 2011.140
23. Leger KJ, Cushing-Haugen K, Hansen JA, et al. Clinical and Genetic Determinants of Cardiomyopathy Risk among Hematopoietic Cell Transplantation Survivors. Biol Blood Marrow Transplant. 2016; 22:1094-1101. https://doi.org/10.1016/j.bbmt.2016.02.017
https://doi.org/10.1016/j.bbmt.2016.02.017
PMid:26968791 PMCid:PMC4977273
24. Li Q, Jin Y, Ye X, et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-133a Restrains Myocardial Fibrosis and Epithelial- Mesenchymal Transition in Viral Myocarditis Rats Through Suppressing MAML1. Nanoscale Res Lett. 2021; 16:111. https://doi.org/10.1186/s11671-021-03559-2
https://doi.org/10.1186/s11671-021-03559-2
PMid:34215939 PMCid:PMC8253878
25. Lin Y, Marin-Argany M, Dick CJ et al. Mesenchymal stromal cells protect human cardiomyocytes from amyloid fibril damage. Cytotherapy. 2017; 19(12):1426-37. https://doi.org/10.1016/j.jcyt.2017.08.021
https://doi.org/10.1016/j.jcyt.2017.08.021
PMid:29037943 PMCid:PMC6456258
26. Miteva K, Pappritz K, El-Shafeey M, et al. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3-Induced Myocarditis. Stem Cells Translational Medicine. 2017; 6:1249-1261. https://doi.org/10.1002/sctm.16-0353
https://doi.org/10.1002/sctm.16-0353
PMid:28186704 PMCid:PMC5442851
27. Mori D, Miyagawa S, Kido T, et al. Adipose-derived mesenchymal stem cells preserve cardiac function via ANT-1 in dilated cardiomyopathy hamster model. Regenerative Therapy. 2021; 18:182-190. https://doi.org/10.1016/j.reth.2021.06.006
https://doi.org/10.1016/j.reth.2021.06.006
PMid:34307796 PMCid:PMC8278151
28. Nagaya N, Kangawa K, Itoh T, et al. Transplantation of Mesenchymal Stem Cells Improves Cardiac Function in a Rat Model of Dilated Cardiomyopathy. Circulation. 2005; 112:1128-1135. https://doi.org/10.1161/CIRCULATIONAHA.104.500447
https://doi.org/10.1161/CIRCULATIONAHA.104.500447
PMid:16103243
29. Nair N, Gongora E. Stem cell therapy in heart failure: Where do we stand today? BBA-Molecular basis of the disease. 2020; 1866(4):165489. https://doi.org/10.1016/j.bbadis.2019.06.003
https://doi.org/10.1016/j.bbadis.2019.06.003
PMid:31199998
30. Nana-Leventaki E, Nana M, Poulianitis N, et al. Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis. Journal of Cardiovascular Pharmacology and Therapeutics. 2019; 24(1):70-77. https://doi.org/10.1177/1074248418784287
https://doi.org/10.1177/1074248418784287
PMid:30060693
31. Palladini G, Milani P. Advances in the treatment of light chain amyloidosis. Current Opinion in Oncology. 2022; 34(6):748-756. https://doi.org/10.1097/CCO.0000000000000881
https://doi.org/10.1097/CCO.0000000000000881
PMid:35943427
32. Premer C, Wanschel A, Porras V, et al. Mesenchymal Stem Cell Secretion of SDF-1α Modulates Endothelial Function in Dilated Cardiomyopathy. Front. Physiol. 2019; 10:1182. https://doi.org/10.3389/fphys.2019.01182
https://doi.org/10.3389/fphys.2019.01182
PMid:31616309 PMCid:PMC6769040
33. Qayyum AA, Mathiasen AB, Helqvist S, et al. Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results. . Transl Med. 2019; 17:360. https://doi.org/10.1186/s12967-019-2110-1
https://doi.org/10.1186/s12967-019-2110-1
PMid:31711513 PMCid:PMC6849216
34. Rieger AC, Myerburg RJ, Florea V, et al. Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine. 2019; 48:377-385. https://doi.org/10.1016/j.ebiom.2019.09.043
https://doi.org/10.1016/j.ebiom.2019.09.043
PMid:31648988 PMCid:PMC6838383
35. Sanchorawala V, Sun F, Quillen K, et al. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20-year experience. Blood. 2015; 126:2345-2347. https://doi.org/10.1182/blood-2015-08-662726
https://doi.org/10.1182/blood-2015-08-662726
PMid:26443620
36. Seth S, Bhargava B, Narang R, et al. The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial, a long-term follow-up study. J Am Coll Cardiol. 2010; 55:1643-1644. https://doi.org/10.1016/j.jacc.2009.11.070
https://doi.org/10.1016/j.jacc.2009.11.070
PMid:20378086
37. Shao M, Wang D, Zhou Y, Du K, Liu W. Interleukin-10 delivered by mesenchymal stem cells attenuates experimental autoimmune myocarditis. International Immunopharmacology. 2020; 81:106212. https://doi.org/10.1016/j.intimp.2020.106212
https://doi.org/10.1016/j.intimp.2020.106212
PMid:32062070
38. Sidana S, Sidiqi MH, Dispenzieri A, et al. Fifteen year overall survival rates after autologous stem cell transplantation for AL amyloidosis. Am J Hematol. 2019; 94(9):1020-1026. https://doi.org/10.1002/ajh.25566.48
https://doi.org/10.1002/ajh.25566
PMid:31254301
39. Tompkins BA, Rieger AC, Florea V, et al. Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy. J Am Heart Assoc. 2018; 7:e008460. https://doi.org/10.1161/JAHA.117.008460
https://doi.org/10.1161/JAHA.117.008460
PMid:30005555 PMCid:PMC6064862
40. Tschope C, Miteva K, Schultheiss HP, Van Linthout S. Mesenchymal Stromal Cells: A Promising Cell Source for the Treatment of Inflammatory Cardiomyopathy. Current Pharmaceutical Design. 2011; 17: 3295-3307. https://doi.org/10.2174/138161211797904136
https://doi.org/10.2174/138161211797904136
PMid:21919878
41. Van Linthout SV, Savvatis K, Miteva K. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. European Heart Journal. 2011; 32:2168-2178. https://doi.org/10.1093/eurheartj/ehq467
https://doi.org/10.1093/eurheartj/ehq467
PMid:21183501 PMCid:PMC3164101
42. Wang Y, Qi Z, Yan Z et al. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol. 2022; 9:742088. https://doi.org/10.3389/fcell.2021.742088
https://doi.org/10.3389/fcell.2021.742088
PMid:35096808 PMCid:PMC8790228
43. Wechalekar AD, Schonland SO, Kastritis E, et al. European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Multicenter Study Blood. 2013; 121(17):3420-3427. https://doi.org/10.1182/blood-2012-12-473066
https://doi.org/10.1182/blood-2012-12-473066
PMid:23479568
44. Wolfien M, Klatt D, Salybekov AA, et al. Hematopoietic stem-cell senescence and myocardial repair – Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine. 2020; 57:102862. https://doi.org/10.1016/j.ebiom.2020.102862
https://doi.org/10.1016/j.ebiom.2020.102862
PMid:32629392 PMCid:PMC7339012
45. Xiao W, Guo S, Gao C, et al. A Randomized Comparative Study on the Efficacy of Intracoronary Infusion of Autologous Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells in Patients With Dilated Cardiomyopathy. Int. Heart J. 2017; 58: 238-244. https://doi.org/10.1536/ihj.16-328
https://doi.org/10.1536/ihj.16-328
PMid:28190794
46. Xu R, Zhang F, Chai R, et al. Exosomes Derived from Pro-inflammatory Bone Marrow-derived Mesenchymal Stem Cells Reduce Inflammation and Myocardial Injury via Mediating Macrophage Polarization. J. Cel Mol Med. 2019; 23: 7617-7631. https://doi.org/10.1111/jcmm.14635
https://doi.org/10.1111/jcmm.14635
PMid:31557396 PMCid:PMC6815833
47. Yokoyama J, Miyagawa S, Akagi T, Akashi M, Sawa Y. Human induced pluripotent stem cell-derived three-dimensional cardiomyocyte tissues ameliorate the rat ischemic myocardium by remodeling the extracellular matrix and cardiac protein phenotype. PLoS ONE. 2021; 16(3):e0245571. https://doi.org/10.1371/journal. pone.0245571
https://doi.org/10.1371/journal.pone.0245571
PMid:33720933 PMCid:PMC7959395
48. Zhang C, Zhou G, Cai C, et al. Human umbilical cord mesenchymal stem cells alleviate acute myocarditis by modulating endoplasmic reticulum stress and extracellular signal regulated 1/2-mediated apoptosis. Molecular medicine reports. 2017; 15:3515-3520. https://doi.org/10.3892/mmr.2017.6454
https://doi.org/10.3892/mmr.2017.6454
PMid:28440472 PMCid:PMC5436290
49. Zhang C, Zhou G, Chen Y, et al. Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF α and TGF β1/ERK1/2 signaling pathways Molecular medicine reports. 2018; 17:71-78. https://doi.org/10.3892/mmr.2017.7882
https://doi.org/10.3892/mmr.2017.7882

Kovalenko V, Nesukay E, Cherniuk S, Kozliuk A. Stem cell therapy of myocarditis and cardiomyopathies: a promising strategy. Cell Organ Transpl. 2022; 10(2):in press. doi:10.22494/cot.v10i2.140

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.