Transplantation of mesenchymal stem cells for the treatment of demyelinating diseases

Home/2021, Vol. 9, No. 1/Transplantation of mesenchymal stem cells for the treatment of demyelinating diseases

Cell and Organ Transplantology. 2021; 9(1):60-65.
DOI: 10.22494/cot.v9i1.123

Transplantation of mesenchymal stem cells for the treatment of demyelinating diseases

Petriv T.1,2,3, Tatarchuk M.1, Tsymbaliuk Yu.1, Tsymbaliuk V.4

  • 1Romodanov State Institute of Neurosurgery, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 2Medical Center Hemafund LTD, Kyiv, Ukraine
  • 3QR Health Solutions, Kyiv, Ukraine
  • 4National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine

Abstract

Demyelinating diseases, especially multiple sclerosis (MS) is not only medical but also socio-economic issue. Unsatisfactory quality of life and high degree of disability in these patients require the implementation of the advanced treatments, such as stem cell transplantation. Numerous experimental and clinical studies are being conducted, revealing new mechanisms of the action of stem cells in demyelinating diseases. Further research is needed to understand many more aspects of clinical use.
This review is devoted to the use of regenerative cell technologies in the treatment of demyelinating diseases, the current state and prospects of the approach to the treatment of such pathology with stem cells.

Keywords: stem cells; cell transplantation; multiple sclerosis

Full Text PDF

1. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018; 391(10130):1622-1636. DOI: 10.1016/S0140-6736(18)30481-1.
https://doi.org/10.1016/S0140-6736(18)30481-1
2. Kamińska J, Koper OM, Piechal K, Kemona H. Multiple sclerosis – etiology and diagnostic potential. Postepy Hig Med Dosw (Online). 2017; 71(0):551-563. DOI: 10.5604/01.3001.0010.3836
https://doi.org/10.5604/01.3001.0010.3836
PMid:28665284
3. Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. 2018; 31(6):752-759. DOI:10.1097/WCO.0000000000000622.
https://doi.org/10.1097/WCO.0000000000000622
PMid:30300239
4. Axisa PP, Hafler DA. Multiple sclerosis: genetics, biomarkers, treatments. Curr Opin Neurol. 2016; 29(3):345-353. DOI: 10.1097/WCO.0000000000000319
https://doi.org/10.1097/WCO.0000000000000319
PMid:27058221 PMCid:PMC7882195
5. Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017; 140(3):527-546. DOI: 10.1093/brain/aww258.
https://doi.org/10.1093/brain/aww258
PMid:27794524
6. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun. 2015; 64:13-25. DOI:10.1016/j.jaut.2015.06.010.
https://doi.org/10.1016/j.jaut.2015.06.010
PMid:26142251 PMCid:PMC4687745
7. Goris A, Dubois B. Leveraging human genetics to inform intervention strategies for multiple sclerosis. Neurology. 2019; 92(16):735-736. DOI: 10.1212/WNL.0000000000007298.
https://doi.org/10.1212/WNL.0000000000007298
PMid:30894451
8. Canto E, Oksenberg JR. Multiple sclerosis genetics. Mult Scler. 2018; 24(1):75-79. DOI: 10.1177/1352458517737371.
https://doi.org/10.1177/1352458517737371
PMid:29307290
9. Yamout BI, Alroughani R. Multiple Sclerosis. Semin Neurol. 2018; 38(2):212-225. DOI: 10.1055/s-0038-1649502.
https://doi.org/10.1055/s-0038-1649502
PMid:29791948
10. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015; 15(9):545-558. DOI: 10.1038/nri3871.
https://doi.org/10.1038/nri3871
PMid:26250739
11. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 2018; 97(4):742-768. DOI:10.1016/j.neuron.2018.01.021.
https://doi.org/10.1016/j.neuron.2018.01.021
PMid:29470968
12. Garg N, Smith TW. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 2015; 5(9):e00362. DOI: 10.1002/brb3.362.
https://doi.org/10.1002/brb3.362
PMid:26445701 PMCid:PMC4589809
13. Sospedra M, Martin R. Immunology of Multiple Sclerosis. Semin Neurol. 2016; 36(2):115-127. DOI: 10.1055/s-0036-1579739.
https://doi.org/10.1055/s-0036-1579739
PMid:27116718
14. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015; 14(4):406-419. DOI: 10.1016/S1474-4422(14)70305-9.
https://doi.org/10.1016/S1474-4422(14)70305-9
15. Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. 2016; 354:i3518. DOI: 10.1136/bmj.i3518.
https://doi.org/10.1136/bmj.i3518
PMid:27549763
16. Douvaras P, Wang J, Zimmer M, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports. 2014; 3(2):250-259. DOI:10.1016/j.stemcr.2014.06.012.
https://doi.org/10.1016/j.stemcr.2014.06.012
PMid:25254339 PMCid:PMC4176529
17. Scolding NJ, Pasquini M, Reingold SC, et al. Cell-based therapeutic strategies for multiple sclerosis. Brain. 2017; 140(11):2776-2796. DOI:10.1093/brain/awx154.
https://doi.org/10.1093/brain/awx154
PMid:29053779 PMCid:PMC5841198
18. Lee CC, Hirasawa N, Garcia KG, Ramanathan D, Kim KD. Stem and progenitor cell microenvironment for bone regeneration and repair. Regen Med. 2019; 14(7):693-702. DOI: 10.2217/rme-2018-0044.
https://doi.org/10.2217/rme-2018-0044
PMid:31393221
19. Gonzales-Portillo GS, Sanberg PR, Franzblau M, et al. Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier. Cell Transplant. 2014; 23(4-5):531-539. DOI: 10.3727/096368914X678337.
https://doi.org/10.3727/096368914X678337
PMid:24480552 PMCid:PMC4083632
20. Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience. 2019; 15:421-438. DOI:10.1016/j.isci.2019.05.004.
https://doi.org/10.1016/j.isci.2019.05.004
PMid:31121468 PMCid:PMC6529790
21. Aisenbrey EA, Bryant SJ. A MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J Biomed Mater Res A. 2018; 106(8):2344-2355. DOI:10.1002/jbm.a.36412.
https://doi.org/10.1002/jbm.a.36412
PMid:29577606 PMCid:PMC6030485
22. Shao PL, Wu SC, Lin ZY, Ho ML, Chen CH, Wang CZ. Alpha-5 Integrin Mediates Simvastatin-Induced Osteogenesis of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci. 2019; 20(3):506. DOI: 10.3390/ijms20030506.
https://doi.org/10.3390/ijms20030506
PMid:30682874 PMCid:PMC6387019
23. Todeschi MR, El Backly R, Capelli C, et al. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration. Stem Cells Dev. 2015; 24(13):1570-1581. DOI:10.1089/scd.2014.0490.
https://doi.org/10.1089/scd.2014.0490
PMid:25685989 PMCid:PMC4499786
24. de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells. 2018; 36(4):602-615. DOI:10.1002/stem.2779.
https://doi.org/10.1002/stem.2779
PMid:29341339
25. Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. Adv Exp Med Biol. 2018; 1060:73-98. DOI: 10.1007/978-3-319-78127-3_5.
https://doi.org/10.1007/978-3-319-78127-3_5
PMid:30155623
26. Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol. 2019; 98(5-8):151041. DOI:10.1016/j.ejcb.2019.04.002.
https://doi.org/10.1016/j.ejcb.2019.04.002
PMid:31023504
27. Caplan AI, Sorrell JM. The MSC curtain that stops the immune system. Immunol Lett. 2015; 168(2):136-139. DOI: 10.1016/j.imlet.2015.06.005.
https://doi.org/10.1016/j.imlet.2015.06.005
PMid:26079607
28. Selich A, Ha TC, Morgan M, et al. Cytokine Selection of MSC Clones with Different Functionality. Stem Cell Reports. 2019; 13(2):262-273. DOI:10.1016/j.stemcr.2019.06.001.
https://doi.org/10.1016/j.stemcr.2019.06.001
PMid:31303506 PMCid:PMC6700478
29. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015; 168(2):140-146. DOI:10.1016/j.imlet.2015.05.004.
https://doi.org/10.1016/j.imlet.2015.05.004
PMid:25982165
30. Zhang Q, Fu L, Liang Y, et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation. J Cell Physiol. 2018; 233(9):6832-6840. DOI:10.1002/jcp.26436.
https://doi.org/10.1002/jcp.26436
PMid:29336475
31. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105(4):1815-1822. DOI: 10.1182/blood-2004-04-1559.
https://doi.org/10.1182/blood-2004-04-1559
PMid:15494428
32. Bonig H, Kuçi Z, Kuçi S, et al. Children and Adults with Refractory Acute Graft-versus-Host Disease Respond to Treatment with the Mesenchymal Stromal Cell Preparation “MSC-FFM”-Outcome Report of 92 Patients. Cells. 2019; 8(12):1577. DOI:10.3390/cells8121577.
https://doi.org/10.3390/cells8121577
PMid:31817480 PMCid:PMC6952775
33. Quintiliano K, Crestani T, Silveira D, et al. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications. Cell Reprogram. 2016; 18(6):369-381. DOI:10.1089/cell.2016.0024.
https://doi.org/10.1089/cell.2016.0024
PMid:27906586
34. Cuascut FX, Hutton GJ. Stem Cell-Based Therapies for Multiple Sclerosis: Current Perspectives. Biomedicines. 2019; 7(2):26. DOI: 10.3390/biomedicines7020026.
https://doi.org/10.3390/biomedicines7020026
PMid:30935074 PMCid:PMC6631931
35. Akinola Samuel Toluvani. Khіrurgіchna korektsіya demієlіnіzuyuchikh ushkodzhen’ tsentral’noї nervovoї sistemi іz zastosuvannyam mezenkhіmal’nikh stovburovikh klіtin (eksperimental’ne doslіdzhennya) [Surgical correction of demyelinating lesions of the central nervous system by using mesenchymal stem cells (experimental study)]. Aavtoref. dis. … kand. med. nauk – Dissertation abstract: 14.01.05. Kyiv, 2019. 27 p.[in Ukrainian]
36. Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015; 2015:394917. DOI: 10.1155/2015/394917.
https://doi.org/10.1155/2015/394917
PMid:25961059 PMCid:PMC4417567
37. Liu XD, Liu D, Zang CB, et al. IFN-γ stimulation enhances immunosuppressive capability of human umbilical cord mesenchymal stem cells. Europe PMC. 2014; 22(3):605-611. DOI:10.7534/j.issn.1009-2137.2014.03.006.
38. Miller RH, Bai L, Lennon DP, Caplan AI. The potential of mesenchymal stem cells for neural repair. Discov Med. 2010; 9(46):236-242.
39. Nessler J, Bénardais K, Gudi V, et al. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One. 2013; 8(7):e69795. DOI:10.1371/journal.pone.0069795.
https://doi.org/10.1371/journal.pone.0069795
PMid:23922802 PMCid:PMC3724887
40. Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther. 2015; 15(9):1293-1306. DOI:10.1517/14712598.2015.1051528.
https://doi.org/10.1517/14712598.2015.1051528
PMid:26067213
41. Liu R, Zhang Z, Lu Z, et al. Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev. 2013; 22(7):1053-1062. doi:10.1089/scd.2012.0463.
https://doi.org/10.1089/scd.2012.0463
PMid:23140594
42. Sahraian MA, Mohyeddin Bonab M, Baghbanian SM, Owji M, Naser Moghadasi A. Therapeutic Use of Intrathecal Mesenchymal Stem Cells in patients with Multiple Sclerosis: A Pilot Study with Booster Injection. Immunol Invest. 2019; 48(2):160-168. DOI:10.1080/08820139.2018.1504301.
https://doi.org/10.1080/08820139.2018.1504301
PMid:30156938
43. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010; 67(10):1187-1194. DOI:10.1001/archneurol.2010.248.
https://doi.org/10.1001/archneurol.2010.248
PMid:20937945 PMCid:PMC3036569
44. Petrou P, Kassis I, Levin N, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020; 143(12):3574-3588. DOI:10.1093/brain/awaa333.
https://doi.org/10.1093/brain/awaa333
PMid:33253391
45. Harris VK, Stark J, Vyshkina T, et al. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018; 29:23-30. DOI:10.1016/j.ebiom.2018.02.002/
https://doi.org/10.1016/j.ebiom.2018.02.002
PMid:29449193 PMCid:PMC5925446
46. Hosseini Shamili F, Alibolandi M, Rafatpanah H, et al. Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. J Control Release. 2019; 299:149-164. DOI:10.1016/j.jconrel.2019.02.032.
https://doi.org/10.1016/j.jconrel.2019.02.032
PMid:30807806
47. Riordan NH, Morales I, Fernández G, et al. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J Transl Med. 2018; 16(1):57. DOI:10.1186/s12967-018-1433-7/
https://doi.org/10.1186/s12967-018-1433-7
PMid:29523171 PMCid:PMC5845260
48. Uccelli A, Laroni A, Brundin L, et al. MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials. 2019; 20(1):263. DOI: 10.1186/s13063-019-3346-z.
https://doi.org/10.1186/s13063-019-3346-z
PMid:31072380 PMCid:PMC6507027
49. Harris VK, Stark J, Vyshkina T, et al. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018; 29:23-30. DOI:10.1016/j.ebiom.2018.02.002.
https://doi.org/10.1016/j.ebiom.2018.02.002
PMid:29449193 PMCid:PMC5925446
50. Available: https://clinicaltrials.gov
51. Yang H, Sun J, Wang F, Li Y, Bi J, Qu T. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study. Oncotarget. 2016; 7(45):72537-72545. DOI:10.18632/oncotarget.12345.
https://doi.org/10.18632/oncotarget.12345
PMid:27705922 PMCid:PMC5341927
52. Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013; 13(5):856-867. DOI:10.2174/1566524011313050016.
https://doi.org/10.2174/1566524011313050016
PMid:23642066
53. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells. 2019; 8(5):467. DOI:10.3390/cells8050467
https://doi.org/10.3390/cells8050467
PMid:31100966 PMCid:PMC6562906

Petriv T, Tatarchuk M, Tsymbaliuk Yu, Tsymbaliuk V. Transplantation of mesenchymal stem cells for the treatment of demyelinating diseases. Cell Organ Transpl. 2021; 9(1):60-65. doi:10.22494/cot.v9i1.123

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.