Different type of matrix for cardiac implants: biomedical and bioengineering aspects

Home/2021, Vol. 9, No. 1/Different type of matrix for cardiac implants: biomedical and bioengineering aspects

Cell and Organ Transplantology. 2021; 9(1):54-58.
DOI: 10.22494/cot.v9i1.122

Different type of matrix for cardiac implants: biomedical and bioengineering aspects

Shchotkina N.1,2,3, Sokol A.1, Dolinchuk L.2, Skorohod I.3, Filipov R.2, Shepeleva O.2, Rudenko N.1, Yemets I.1

  • 1Ukrainian Children’s Cardiac Center, Kyiv, Ukraine
  • 2Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Kyiv, Ukraine
  • 3Xpand LLC, Kyiv, Ukraine

Abstract

The rapid growth of cardiovascular morbidity and high mortality rates of patients with congenital heart disease requiring surgery have led to the search for new modern approaches to the treatment of these groups of patients. The main trends today include the use of cardiaс implants of synthetic and biological origin. Of particular interest are scaffolds based on the decellularized extracellular matrix, which in its functional and structural characteristics is close to the native pericardium. In contrast to synthetic analogues, such grafts can fully replace a tissue or an organ defects, and then integrate and function properly.
This review presents the characteristics of different types of matrices used in cardiac surgery. The advantages and disadvantages of commercially available cardiac bioimplants currently used in the world are analyzed.

Keywords: tissue engineering; cardiac bioimplant; extracellular matrix

Full Text PDF

1. Hacker MC, Krieghoff J, Mikos AG. Synthetic Polymers. In: Atala A, editor. Principles of Regenerative Medicine. 3 ed. Academic Press; 2018. pp. 1428-1428.
2. Hench LL, Polak JM. Third-Generation Biomedical Materials. Science. 2002;295(5557):1014-1017.
https://doi.org/10.1126/science.1067404
PMid:11834817
3. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675-3683.
https://doi.org/10.1016/j.biomaterials.2006.02.014
PMid:16519932
4. Taylor PM, Cass AEG, Yacoub MH Extracellular matrix scaffolds for tissue engineering heart valves. Prog. Paediatr. Cardiol. 2006a;21:219-225. doi:10.1016/j.ppedcard.2005.11.010.
https://doi.org/10.1016/j.ppedcard.2005.11.010
5. Chlupac J, Filova E, Havlikova J, et. al. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress. Tissue Eng Part A. 2014;20(15-16):2253-64. doi: 10.1089/ten.TEA.2013.0153.
https://doi.org/10.1089/ten.tea.2013.0153
PMid:24606163 PMCid:PMC4137337
6. d’Ayala G. G., Malinconico M., Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules. 2008;13, 2069-2106. doi:10.3390/molecules13092069.
https://doi.org/10.3390/molecules13092069
PMid:18830142 PMCid:PMC6245343
7. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med. Biol. Eng. Comput. 2000;38:211-218. doi:10.1007/BF02344779.
https://doi.org/10.1007/BF02344779
PMid:10829416
8. Chung-Welch N, Patton WF, Yen-Patton GP, et. al. Phenotypic comparison between mesothelial and microvascular endothelial cell lineages using conventional endothelial cell markers, cytoskeletal protein markers and in vitro assays of angiogenic potential. Differentiation. 1989;42(1):44-53. doi: 10.1111/j.1432-0436.1989.tb00606.x.
https://doi.org/10.1111/j.1432-0436.1989.tb00606.x
PMid:2482821
9. Fan T, Ma X, Zhao J, et. al. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400-7.
10. Pawan KC, Yi Hong, Ge Zhang. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater. 2019; 6(4): 185-199. doi: 10.1093/rb/rbz017.
https://doi.org/10.1093/rb/rbz017
PMid:31404421 PMCid:PMC6683951
11. Shchotkina NV, Sokol AA, Galkin OYu, et. al. Optimized method of bovine pericardium decellularization for tissue engineering. Wiad Lek. 2021;74(4):815-820. doi: 10.36740/WLek202104101.
https://doi.org/10.36740/WLek202104101
PMid:34155985
12. Sokol AA, Grekov DA, Yemets GI, Galkin AYu., et. al. The efficiency of decellularization of bovine pericardium by different concentrations of sodium dodecyl sulfate. Innov Biosyst Bioeng. 2020; 4(4): 189-198. doi: 10.20535/ibb.2020.4.4.214765.
https://doi.org/10.20535/ibb.2020.4.4.214765
13. Sultanova AS, Bespalova OYa, Galkin OYu. Stromal-vascular fraction of adipose tissue as an alternative source of cellular material for regenerative medicine. Ukr. Biochem. J. 2021; 93(1): 40-50. doi: 10.15407/ubj93.01.040.
https://doi.org/10.15407/ubj93.01.040
14. Wilshaw SP, Kearney JN, Fisher J, et. al. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 2006;12(8):2117-29. doi: 10.1089/ten.2006.12.2117.
https://doi.org/10.1089/ten.2006.12.2117
PMid:16968153
15. Quintessenza J.A., Jacobs J.P., Chai P.J., et. al. Polytetrafluoroethylene bicuspid pulmonary valve implantation: experience with 126 patients. World J. Pediatr. Congenit. Heart Surg. 2010;1:20-27.
https://doi.org/10.1177/2150135110361509
PMid:23804719
16. Quintessenza J.A., Jacobs J.P., Morell V.O., et. al. Initial experience with a bicuspid polytetrafluoroethylene pulmonary valve in 41 children and adults: a new option for right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 2005;79:924-931.
https://doi.org/10.1016/j.athoracsur.2004.05.045
PMid:15734406
17. Choi K.H., Sung S.C., Kim H., et. al. Late results of right ventricular outflow tract reconstruction with a bicuspid expanded polytetrafluoroethylene valved conduit. J. Card. Surg. 2018;33:36-40.
https://doi.org/10.1111/jocs.13507
PMid:29314335
18. Grigorieva SM, Starosyla DB, Rybalko SL, et. al. Effect of recombinant human interleukin-7 on Pseudomonas aeruginosa wound infection. Ukr. Biochem. J. 2019; 91(5): 7-15. doi: 10.15407/ubj91.05.007.
https://doi.org/10.15407/ubj91.05.007
19. Perkasem K, Rothwell PM Patches of different types for carotid patch angioplasty. Cochrane Database of Systematic Reviews 2010;3. Art. No.: CD000071. doi:10.1002/14651858.CD000071.pub3.
https://doi.org/10.1002/14651858.CD000071.pub3
PMid:20238308 PMCid:PMC7032696
20. Klopsch C, Steinhoff G. Tissue-engineered devices in cardiovascular surgery. Eur Surg Res. 2012;49(1):44-52. doi: 10.1159/000339606.
https://doi.org/10.1159/000339606
PMid:22813649
21. Mishra PK, Ashoub A, Salhiyyah K Role of topical application of gentamicin containing collagen implants in cardiac surgery. J Cardiothorac Surg; 2014;9:122. doi: 10.1186/1749-8090-9-122.
https://doi.org/10.1186/1749-8090-9-122
PMid:25005533 PMCid:PMC4227288
22. Weber M, Gonzalez de Torre, Moreira R, et. al. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves.Tissue Eng Part C Methods. 2015 1; 21(8): 832-840. doi: 10.1089/ten.tec.2014.0396
https://doi.org/10.1089/ten.tec.2014.0396
PMid:25654448 PMCid:PMC4523041
23. Miriam W, Israel GdT, Ricardo M, et. al. Multiple-step injection molding for fibrin-based tissue-engineered heart valves. Tissue Eng. Part C. 2015;21:832-840.
https://doi.org/10.1089/ten.tec.2014.0396
PMid:25654448 PMCid:PMC4523041
24. Galkin OYu, Komar AG, Besarab OB. Different mice inbred strains humoral immune response against human prostate-specific antigen. Ukr. Biochem. J. 2019; 91(1): 30-37. doi: 10.15407/ubj91.01.030.
https://doi.org/10.15407/ubj91.01.030
25. Naficy S, Brown HR, Razal J.M., et. al. Progress toward robust polymer hydrogels. Aust. J. Chem. 2011;64:1007-1025.
https://doi.org/10.1071/CH11156
26. Taylor PM. Biological matrices and bionanotechnology. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1313-1320. doi:10.1098/rstb.2007.2117.
https://doi.org/10.1098/rstb.2007.2117
PMid:17581810 PMCid:PMC2440397
27. Tsai SH, Liu YW, Tang WC, et. al. Characterization of porcine arterial endothelial cells cultured on amniotic membrane, a potential matrix for vascular tissue engineering. Biochem Biophys Res Commun. 2007;357(4):984-90. doi: 10.1016/j.bbrc.2007.04.047.
https://doi.org/10.1016/j.bbrc.2007.04.047
PMid:17459341
28. Vesely I, Ramamurthi A. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials. 2005;26:999-1010. doi: 10.1016/j.biomaterials.2004.04.016.
https://doi.org/10.1016/j.biomaterials.2004.04.016
PMid:15369688
29. Lam NT, Lam H, Sturdivant NM, Balachandran K. Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Biomed Mater. 2017;12(4):045013. doi: 10.1088/1748-605X/aa71be.
https://doi.org/10.1088/1748-605X/aa71be
PMid:28484097
30. Rhee S, Puetzer JL, Mason BN, et. al. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2016;2:1800-1805.
https://doi.org/10.1021/acsbiomaterials.6b00288
PMid:33440478
31. Lim LS, Poh RW, Riau AK, et. al. Biological and ultrastructural properties of acelagraft, a freeze-dried γ-irradiated human amniotic membrane. Arch Ophthalmol. 2010;128(10):1303-10. doi:10.1001/archophthalmol.2010.222.
https://doi.org/10.1001/archophthalmol.2010.222
PMid:20938000
32. Chen L, Zhu Y, Li Y, et. al. Progress and prospect of electrospun silk fibroin in construction of tissue-engineering scaffold. Sheng Wu Gong Cheng Xue Bao. 2011;27(6):831-7.
33. Yetkin G, Uludag M, Citgez B, et. al. Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E and human amniotic membrane. Int J Surg. 2009;7(6):561-5. doi: 10.1016/j.ijsu.2009.09.007.
https://doi.org/10.1016/j.ijsu.2009.09.007
PMid:19800036
34. Nastenko IeA, Maksymenko VB, Potashev SV, et. al. Random forest algorithm construction for the diagnosis of coronary heart diseasebased on echocardiography video data streams. Innov Biosyst Bioeng. 2021; 5(1): 61-69. doi: 10.20535/ibb.2021.5.1.225794.
https://doi.org/10.20535/ibb.2021.5.1.225794
35. Jaganathan SK, Supriyanto E, Murugesan S, et. al. Biomaterials in cardiovascular research: applications and clinical implications. Biomed Res Int. 2014;2014:459465. DOI: 10.1155/2014/459465.
https://doi.org/10.1155/2014/459465
PMid:24895577 PMCid:PMC4033350
36. Lima Ed, Ferrasi AC, Kaasi A Decellularization of Human Pericardium with Potential Application in Regenerative Medicine. Arq Bras Cardiol. 2019; 113(1): 18-19. doi: 10.5935/abc.20190130.
https://doi.org/10.5935/abc.20190130
37. Lutsenko TN, Kovalenko MV, Galkin OYu. Validation of biological activity testing procedure of recombinant human interleukin-7. Ukr. Biochem. J. 2017; 89(1): 82-89. doi: 10.15407/ubj89.01.082.
https://doi.org/10.15407/ubj89.01.082
PMid:29236393
38. Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater. 2014;1(1):81-89.
https://doi.org/10.1093/rb/rbu009
PMid:26816627 PMCid:PMC4669006
39. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 2006 Oct;12(10):2975-83. DOI: 10.1089/ten.2006.12.2975.
https://doi.org/10.1089/ten.2006.12.2975
PMid:17518665
40. Obermiller JF, Hodde JP, McAlexander CS, et. al. A comparison of suture retention strengths of three biomaterials. Med Sci Monit. 2004;10(1):I1-5.
41. Kim GE, Kwon TW, Cho YP, et. al. Carotid endarterectomy with bovine patch angioplasty: a preliminary report. Cardiovasc Surg. 2001;9(5):458-62. DOI: 10.1016/s0967-2109(01)00042-4.
https://doi.org/10.1016/S0967-2109(01)00042-4
42. Us MH, Sungun M, Sanioglu S, et. al. A retrospective comparison of bovine pericardium and polytetrafluoroethylene patch for closure of ventricular septal defects. J Int Med Res. 2004;32(2):218-21. doi: 10.1177/147323000403200216.
https://doi.org/10.1177/147323000403200216
PMid:15080027
43. Gomes WJ, Leal JC, Jatene FB, et. al. Experimental Study and Early Clinical Application Of a Sutureless Aortic Bioprosthesis. Case Reports Braz J Cardiovasc Surg. 2015;30(5):515-9. doi: 10.5935/1678-9741.20150072.
https://doi.org/10.5935/1678-9741.20150072
44. Holoshitz N, Kavinsky CJ, Hijazi ZM The Edwards SAPIEN Transcatheter Heart Valve for Calcific Aortic Stenosis: A Review of the Valve, Procedure, and Current Literature Cardiol Ther. 2012;1(1):6. doi:10.1007/s40119-012-0006-8.
https://doi.org/10.1007/s40119-012-0006-8
PMid:25135160 PMCid:PMC4107442
45. https://clinicaltrials.gov/ct2/show/NCT03669042
46. Laura Iop, Tiziana Palmosi, Eleonora Dal Sasso, Gino Gerosa. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis. 2018 Jul;10(Suppl 20): S2390-S2411. doi: 10.21037/jtd.2018.04.27.
https://doi.org/10.21037/jtd.2018.04.27
PMid:30123578 PMCid:PMC6081367
47. Salameh A, Greimann W, Vondrys D, et. al. Calcification or not. This is the question. A 1-year study of bovine pericardial vascular patches (CardioCel) in minipigs. Semin Thorac Cardiovasc Surg. 2018;30(1):54-9. DOI: 10.1053/j.semtcvs.2017.09.013.
https://doi.org/10.1053/j.semtcvs.2017.09.013
PMid:29024719
48. Herijgers P, Ozaki S , Verbeken E, et. al. The No-React anticalcification treatment: a comparison of Biocor No-React II and Toronto SPV stentless bioprostheses implanted in sheep.Semin Thorac Cardiovasc Surg; 1999;11(4):171-5.
49. De Martino A, Milano AD, Bortolotti U Use of Pericardium for Cardiac Reconstruction Procedures in Acquired Heart Diseases-A Comprehensive Review. Thorac Cardiovasc Surg. 2021;69(1):83-91. doi: 10.1055/s-0039-1697918.
https://doi.org/10.1055/s-0039-1697918
PMid:31604358
50. Sokol AA, Grekov DA, Yemets GI, et. al. Biocompatibility analysis of the decellularized bovine pericardium. Cell and Organ Transplantology. 2020; 8(2): 112-116. doi: 10.22494/cot.v8i2.110.
https://doi.org/10.22494/cot.v8i2.110
51. Sokol AA, Grekov DA, Yemets GI, et. al. Comparison of bovine pericardium decellularization protocols for production of biomaterial for cardiac surgery. Biopolym. Cell., 2020; 36(5):392-403. doi: 10.7124/bc.000A3C.
https://doi.org/10.7124/bc.000A3C

Shchotkina N, Sokol A, Dolinchuk L, Skotohod I, Filipov R, Shepeleva O, Rudenko N, Yemets I. Different type of matrix for cardiac implants: biomedical and bioengineering aspects. Cell Organ Transpl. 2021; 9(1):54-58. doi:10.22494/cot.v9i1.122

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.