The effects of combined administration of human umbilical cord-derived multipotent mesenchymal stromal cells and melatonin or fibroblast growth factor-2 to aged mice with a toxic cuprizone model of demyelination

Home/2021, Vol. 9, No. 1/The effects of combined administration of human umbilical cord-derived multipotent mesenchymal stromal cells and melatonin or fibroblast growth factor-2 to aged mice with a toxic cuprizone model of demyelination

Cell and Organ Transplantology. 2021; 9(1):4-10.
DOI: 10.22494/cot.v9i1.116

The effects of combined administration of human umbilical cord-derived multipotent mesenchymal stromal cells and melatonin or fibroblast growth factor-2 to aged mice with a toxic cuprizone model of demyelination

Labunets I.1, Utko N.1, Toporova O.1,2, Pokholenko Ya.1,2, Panteleymonova T.1, Litoshenko Z.1, Butenko G.1

  • 1State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 2Institute of Molucular Biology and Genetic, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraineedical Center Hemafund LTD, Kyiv, Ukraine

Abstract

The effect of transplantation of umbilical cord-derived multipotent mesenchymal stromal cells (UC-MMSCs) to patients with demyelinating diseases depends on the age of the recipient and can change under the influence of hormones or growth factors.
Purpose. To investigate the effect of exogenous melatonin and recombinant human fibroblast growth factor-2 (rhFGF-2) on the effects of UC-MMSCs transplanted into aged mice with an experimental model of multiple sclerosis.
Material and methods. 129/Sv mice, 15-17 months old, received the neurotoxin cuprizone with food for 3 weeks. From the 10th day of the cuprizone diet, 5·105 UC-MMSCs were injected intravenously. From the 11th day they received melatonin at 600 p.m. or rhFGF-2. The behavioral parameters were evaluated in the open field test and rotarod test. In the brain, the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and the level of malondialdehyde (MDA) were assessed.
Results. Cuprizone intake reduces the behavioral response in mice compared to the intact group. The transplantation of UC-MMSCs increases the number of rearings and muscle tone in mice. Melatonin injections enhance the effects of cells on these parameters, as well as increase the motor and emotional activity of animals. The injection of rhFGF-2 preserves the effect of cells on behavioral response and increases locomotor activity in mice. After the injection of UC-MMSCs with melatonin or rhFGF-2, the content of MDA in the brain decreases and the activity of antioxidant enzymes increases, this is more significant under the influence of melatonin.
Conclusion. Exogenous melatonin and rhFGF-2 improve the effects of transplanted UC-MMSCs on behavioral responses and brain antioxidant defenses in aged mice with cuprizone diet. At the same time, the positive effect of the combination of cells with melatonin is more pronounced.

Key words: umbilical cord-derived multipotent mesenchymal stromal cells; melatonin; rhFGF-2; cuprizone; demyelination; behavioral response; oxidative stress

Full Text PDF

1. Vaughn GB, Jakimovski D, Weinstock-Guttman B. Epidemiology and treatment of multiple sclerosis in elderly populations. Nature Reviews. Neurology. 2019; 15:329-342. DOI:10.1038/s41582-019-0183-3
https://doi.org/10.1038/s41582-019-0183-3
PMid:31000816
2. Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapog P. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci. 2013; 123:9-24. PMID:23985544.
https://doi.org/10.1254/jphs.13R01SR
PMid:23985544
3. Sarcar P, Rice CM, Scolding NJ. Cell therapy for multiple sclerosis. CNS Drugs. 2017; 31:453-469. DOI:10.1007/s40263-017-0429-9.
https://doi.org/10.1007/s40263-017-0429-9
PMid:28397112
4. Genc B, Bozan HR, Genc S, Genc K. Stem cell therapy for multiple sclerosis. Adv Exp Med Biol. 2019; 1084:145-174. DOI: 10.1007/5584_2018_247.
https://doi.org/10.1007/5584_2018_247
PMid:30039439
5. Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantation: a systemic analysis of clinical trials. Cytotherapy. 2017; 19(12):1351-1382. DOI:10.1016/j.cyt.2017.08.004.
https://doi.org/10.1016/j.jcyt.2017.08.004
PMid:28964742
6. ElOmar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells-based therapies? Tissue Eng Part B Rev. 2014; 20(5):523-544. DOI:10.1089/ten.TEB.2013.0664.
https://doi.org/10.1089/ten.teb.2013.0664
PMid:24552279
7. Putra A, Ridwan ВR, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NACh, et al. The role of TNF-alpha induced MSCs on suppressive inflammation by increasing TGF-beta and IL-10. Open Access Maced J Med Sci. 2018; 6(10):1779-1783.
https://doi.org/10.3889/oamjms.2018.404
PMid:30455748 PMCid:PMC6236029
8. 8 Shen J, Tsai Y-T, Di Marco NM, Lang MA, Sun X, Tang L. Transplantation of mesenchymal stem cells from young donors delays aging in mice. Scientific reports. 2011; 1:67. DOI:10.1038/srep00067.
https://doi.org/10.1038/srep00067
PMid:22355586 PMCid:PMC3216554
9. Fabian C, Naaldijk Y, Leovsky Ch, Johnson AA, Rudolph l, Jaeger C, et al. Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health. Stem Cell Res Ther. 2017; 8(85). DOI:10.1186/s13287-017-0533-2.
https://doi.org/10.1186/s13287-017-0533-2
PMid:28420415 PMCid:PMC5395862
10. Labunets I, Utko N, Toporova O, Panteleymonova T, Rodnichenko A, Butenko G. The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination. Cell Organ Transpl. 2020; 8(1):38-42. DOI: 10.22494/cot.v8i1.106
https://doi.org/10.22494/cot.v8i1.106
11. Hu Ch, Li L. Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther. 2019. 10.. DOI: 10.1186/s13287-018-1114-8.
https://doi.org/10.1186/s13287-018-1114-8
PMid:30635065 PMCid:PMC6329089
12. Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulatory stem cell biology and its application in disease therapy. Pharmacol Res. 2017; 117:252-260. DOI: 10.1016/jphrs.2016.12.035
https://doi.org/10.1016/j.phrs.2016.12.035
PMid:28042087
13. Anderson G, Rodriguez M. Multiple sclerosis:the role of melatonin and N-acethylserotonin. Multiple sclerosis and related disorders. 2015; 4:112-123. DOI: 10.1016/j.msard.2014.12.001.
https://doi.org/10.1016/j.msard.2014.12.001
PMid:25787187
14. Labunets IF, Rodnichenko AE. Effekty melatonina u molodykh i stareyushchikh myshey s toksicheskoy kuprizonovoy model’yu demielinizatsii [Effects of melatonin in young and aging mice with toxic cuprizone demyelination model]. Uspekhi gerontol – The successes of gerontol. 2019; 32(3):338-346. PMID 31512419. [In Russian]
15. 15. Kashani IR, RaJabi Z, Akbari M, Hassanzadeh Gh, Mohseni A, Eramsadati MK, et al. Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res. 2014; 232(9):2835-2846. DOI: 10.1007/s00221-014-3946-5.
https://doi.org/10.1007/s00221-014-3946-5
PMid:24798398
16. Wurtman R. Multiple sclerosis, melatonin and neurobehavioral diseases. Front Endocr 2017; 8. DOI: 10.3389/fendo.2017.00280.
https://doi.org/10.3389/fendo.2017.00280
PMid:29109699 PMCid:PMC5660121
17. Huang Y, Dreyfusm ChF. The role of growth factors et a therapeutic approach to demyelinating disease. Exp Neurol. 2016; 283:531-540. DOI: 10.1016/j.expneurol.2016.02.023.
https://doi.org/10.1016/j.expneurol.2016.02.023
PMid:27016070 PMCid:PMC5010931
18. Coutu DL, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging. 2011; 31(10):920-933. Available from: http: www.impactaging.com
https://doi.org/10.18632/aging.100369
PMid:21990129 PMCid:PMC3229969
19. Noda M, Takii K, Parajuli B, Kawanokuchi J, Sonobe Y, Takeuchi H, et al. FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. J neuroinflam. 2014; 11:76. DOI: 10.1186/1742-2094-11-76.
https://doi.org/10.1186/1742-2094-11-76
PMid:24735639 PMCid:PMC4022102
20. Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immumology. 2011; 133:370-378. DOI:10.1111/j.1365-2567.2011.03450.x.
https://doi.org/10.1111/j.1365-2567.2011.03450.x
PMid:21564095 PMCid:PMC3112346
21. Labunets I, Rodnichenko A, Utko N, Panteleimonova T, Pokholenko Ya, Litoshenko Z, et al. Effects of interleukin-10 and fibroblasts growth factor 2 in mice with toxic cuprizone model of demyelination. Cell Organ Transpl. 2019; 7(1):25-31. DOI:10.22494/cot.v7i1.93.
https://doi.org/10.22494/cot.v7i1.93
22. Wang L, Li Xi-Xi, Chen Xi, Qin X-Y, Kardami E, Cheng Y. Anti-depresant-like effects of low- and high molecular weight FGF-2 on hronic unpredictable mild stress. Front Mol Neurosci. 2018; 11:377. DOI: 10.3389/fnmol.2018.00377.
https://doi.org/10.3389/fnmol.2018.00377
PMid:30369869 PMCid:PMC6194172
23. Tang V, Cai B, Yuan F, He X, Lin X, Wang J, et al. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplantation. 2014; 23(10):1279-1291. DOI: 10.3727/096368913X667510.
https://doi.org/10.3727/096368913X667510
PMid:23635511
24. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. J Neubiorev. 2014; 47:485-505. Doi.org/10.10161/j.neubiorev.2014.10.004.
https://doi.org/10.1016/j.neubiorev.2014.10.004
PMid:25445182
25. Tsymbaliuk VI, Velychko OM, Pichkur OL, Verbovska SA, Shuvalova NS, Toporova ОК, et al. Effects of Warton’s jelly humans mesenchymal stem cells transfected with plasmid containing il-10 gene to the behavioral response in rats with experimental allergic encephalomyelitis. Cell Organ Tranpl. 2015; 3(2):139-143. DOI: 10.22494/COT.V3I2.14.
https://doi.org/10.22494/COT.V3I2.14
26. Maslova OO, Shuvalova NS, Sukhorada OM, Zhukova SM, Deryabina OG, Makarenko MV, et al. Heterogeneity of Umbilical Cords as a Source for Mesenchymal Stem Cells. Dataset Paper. 2013; 2013. Available from: https://doi.org/10.7167/2013/370103)
https://doi.org/10.7167/2013/370103
27. Seglen PO. Preparation of isolated rat liver cells. Meth. Cell. Biol. 1976; 13:29-83.
https://doi.org/10.1016/S0091-679X(08)61797-5
28. Labunets IF, Rodnichenko AE, Melnyk NO, Rymar SE, Utko NA, Gavrulyk-Skyba GO, et al. Neuroprotective effect of the recombinant human leukemia inhibitory factor in mice with an experimental cuprizone model of multiple sclerosis: possible mechanisms. Biopolym Cell. 2018; 34(5):350-360. DOI: http;//dx.doi.org/10.7124/bc000989.
https://doi.org/10.7124/bc.000989
29. Nessler ., Benardais K, Gudi V, Hoffman A, Tejedor LS, JanBen S, et al. Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PloS ONE. 2013; 8(7):69795-8. DOI:10.1371/journal.pone 0069795.
https://doi.org/10.1371/journal.pone.0069795
PMid:23922802 PMCid:PMC3724887
30. Amikishieva AV. Povedencheskoe fenotipirovanie: sovremennye metody i oborudovanie [Behavioral phenotyping: modern methods and equipment]. VOGiS Bulletin 2009; 13(3):529-542. [In Russian]
31. Mukai T, Mon Y, Shimazu T, Takahashi A, Tsunoda H, Yamaquchi S, et al. Intravenous injection of umbilical cord-derived mesenchymal stromal cells attrnuates reactive gliosis and hypomyelination in neonatal intraventricular hemorrhage model. Neuroscience. 2017; 355:175-187. DOI:10.1016/j.neuroscience.2017.05.006.
https://doi.org/10.1016/j.neuroscience.2017.05.006
PMid:28504197
32. Kim W, Hahn KR, Jung H, Kwon HJ, Nam SM, Kim JW, et al. Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav. 2019; 9. DOI: 10.1002/brb3.1388.
https://doi.org/10.1002/brb3.1388
33. Li X, Zheng H, Ho J, Ho J, Chan MT, Wu WKK. Protective roles of melatonin in central nervous system disease by regulation of neural stem cells. Cell proliferation. 2016; 50. DOI: 10.1111/cpr.12323.
https://doi.org/10.1111/cpr.12323
PMid:27943459 PMCid:PMC6529065
34. Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G, et al. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res. 2014; 56:382-397. DOI:10.1111/jpi.12133.
https://doi.org/10.1111/jpi.12133
PMid:24650016
35. Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014; 9(2):92-101. DOI: 10.1007/s11481-013-9501-5.
https://doi.org/10.1007/s11481-013-9501-5
PMid:24057103 PMCid:PMC4109802

Labunets I, Utko N, Toporova O, Pokholenko Ya, Panteleymonova T, Litoshenko Z, Butenko G. The effects of combined administration of human umbilical cord-derived multipotent mesenchymal stromal cells and melatonin or fibroblast growth factor-2 to aged mice with a toxic cuprizone model of demyelination. Cell Organ Transpl. 2021; 9(1):4-10. doi:10.22494/cot.v9i1.116

Creative Commons License
Is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.